35 research outputs found

    A pathogenic role for cystic fibrosis transmembrane conductance regulator in celiac disease

    Get PDF
    Intestinal handling of dietary proteins usually prevents local inflammatory and immune responses and promotes oral tolerance. However, in ~ 1% of the world population, gluten proteins from wheat and related cereals trigger an HLA DQ2/8-restricted TH1 immune and antibody response leading to celiac disease. Prior epithelial stress and innate immune activation are essential for breaking oral tolerance to the gluten component gliadin. How gliadin subverts host intestinal mucosal defenses remains elusive. Here, we show that the \u3b1-gliadin-derived LGQQQPFPPQQPY peptide (P31-43) inhibits the function of cystic fibrosis transmembrane conductance regulator (CFTR), an anion channel pivotal for epithelial adaptation to cell-autonomous or environmental stress. P31-43 binds to, and reduces ATPase activity of, the nucleotide-binding domain-1 (NBD1) of CFTR, thus impairing CFTR function. This generates epithelial stress, tissue transglutaminase and inflammasome activation, NF-\u3baB nuclear translocation and IL-15 production, that all can be prevented by potentiators of CFTR channel gating. The CFTR potentiator VX-770 attenuates gliadin-induced inflammation and promotes a tolerogenic response in gluten-sensitive mice and cells from celiac patients. Our results unveil a primordial role for CFTR as a central hub orchestrating gliadin activities and identify a novel therapeutic option for celiac disease

    NADPH Oxidase Limits Innate Immune Responses in the Lungs in Mice

    Get PDF
    Background: Chronic granulomatous disease (CGD), an inherited disorder of the NADPH oxidase in which phagocytes are defective in generating superoxide anion and downstream reactive oxidant intermediates (ROIs), is characterized by recurrent bacterial and fungal infections and by excessive inflammation (e.g., inflammatory bowel disease). The mechanisms by which NADPH oxidase regulates inflammation are not well understood. Methodology/Principal Findings: We found that NADPH oxidase restrains inflammation by modulating redox-sensitive innate immune pathways. When challenged with either intratracheal zymosan or LPS, NADPH oxidase-deficient p47phox-/- mice and gp91phox-deficient mice developed exaggerated and progressive lung inflammation, augmented NF-kB activation, and elevated downstream pro-inflammatory cytokines (TNF-α, IL-17, and G-CSF) compared to wildtype mice. Replacement of functional NADPH oxidase in bone marrow-derived cells restored the normal lung inflammatory response. Studies in vivo and in isolated macrophages demonstrated that in the absence of functional NADPH oxidase, zymosan failed to activate Nrf2, a key redox-sensitive anti-inflammatory regulator. The triterpenoid, CDDO-Im, activated Nrf2 independently of NADPH oxidase and reduced zymosan-induced lung inflammation in CGD mice. Consistent with these findings, zymosan-treated peripheral blood mononuclear cells from X-linked CGD patients showed impaired Nrf2 activity and increased NF-kB activation. Conclusions/Significance: These studies support a model in which NADPH oxidase-dependent, redox-mediated signaling is critical for termination of lung inflammation and suggest new potential therapeutic targets for CGD

    The C Allele of rs5743836 Polymorphism in the Human TLR9 Promoter Links IL-6 and TLR9 Up-Regulation and Confers Increased B-Cell Proliferation

    Get PDF
    In humans, allelic variants in Toll-like receptors (TLRs) associate with several pathologies. However, the underlying cellular and molecular mechanisms of this association remain largely unknown. Analysis of the human TLR9 promoter revealed that the C allele of the rs5743836 polymorphism generates several regulatory sites, including an IL-6-responding element. Here, we show that, in mononuclear cells carrying the TC genotype of rs5743836, IL-6 up-regulates TLR9 expression, leading to exacerbated cellular responses to CpG, including IL-6 production and B-cell proliferation. Our study uncovers a role for the rs5743836 polymorphism in B-cell biology with implications on TLR9-mediated diseases and on the therapeutic usage of TLR9 agonists/antagonists

    Genetically-Determined Hyperfunction of the S100B/RAGE Axis Is a Risk Factor for Aspergillosis in Stem Cell Transplant Recipients

    Get PDF
    Invasive aspergillosis (IA) is a major threat to the successful outcome of hematopoietic stem cell transplantation (HSCT), although individual risk varies considerably. Recent evidence has established a pivotal role for a danger sensing mechanism implicating the S100B/receptor for advanced glycation end products (RAGE) axis in antifungal immunity. The association of selected genetic variants in the S100B/RAGE axis with susceptibility to IA was investigated in 223 consecutive patients undergoing HSCT. Furthermore, studies addressing the functional consequences of these variants were performed. Susceptibility to IA was significantly associated with two distinct polymorphisms in RAGE (-374T/A) and S100B (+427C/T) genes, the relative contribution of each depended on their presence in both transplantation counterparts [patient SNPRAGE, adjusted hazard ratio (HR), 1.97; P = 0.042 and donor SNPRAGE, HR, 2.03; P = 0.047] or in donors (SNPS100B, HR, 3.15; P = 7.8e-4) only, respectively. Functional assays demonstrated a gain-of-function phenotype of both variants, as shown by the enhanced expression of inflammatory cytokines in RAGE polymorphic cells and increased S100B secretion in vitro and in vivo in the presence of the S100B polymorphism. These findings point to a relevant role of the danger sensing signaling in human antifungal immunity and highlight a possible contribution of a genetically-determined hyperfunction of the S100B/RAGE axis to susceptibility to IA in the HSCT setting

    TLR9 activation dampens the early inflammatory response to paracoccidioides brasiliensis, Impacting host survival

    Get PDF
    Background: Paracoccidioides brasiliensis causes paracoccidioidomycosis, one of the most prevalent systemic mycosis in Latin America. Thus, understanding the characteristics of the protective immune response to P. brasiliensis is of interest, as it may reveal targets for disease control. The initiation of the immune response relies on the activation of pattern recognition receptors, among which are TLRs. Both TLR2 and TLR4 have been implicated in the recognition of P. brasiliensis and regulation of the immune response. However, the role of TLR9 during the infection by this fungus remains unclear.J.F. Menino was supported by a grant from Fundacao para a Ciencia e Tecnologia (FCT), Portugal (SFRH/BD/33446/2008). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Saraiva is a Ciencia 2007 fellow and M. Sturme is a Ciencia 2008 fellow. We would also like to thank FAPESP (Fundacao para Amparo a Pesquisa do Estado de Sao Paulo) and CNPq (Conselho Nacional de Desenvolvimento Cientifico e Tecnologico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    RT-qPCR detection of Aspergillus fumigatus RNA in vitro and in a murine model of invasive aspergillosis utilizing the PAXgene® and Tempus™ RNA stabilization systems

    No full text
    Molecular diagnosis of invasive aspergillosis (IA) is a potentially life-saving tool in the care of at-risk individuals. To date, the development of PCR-based diagnostic tests has been hampered by the lack of standardization in the methods for such critical activities. In this study, we used both spiked volunteer blood samples and a murine model of IA to test the utility of the PAXgene and Tempus systems for stabilization and isolation of fungal RNA from blood as part of an evaluation of a new diagnostic strategy. In spiking experiments, RNA isolation followed by RT-qPCR that targeted the 18S gene was compared to a standard DNA isolation and qPCR assay that targeted the ITS ribosomal region. We demonstrated that both PAXgene and Tempus RNA stabilization and extraction systems followed by RT-qPCR had similar performance in detecting fungal RNA in blood samples from Aspergillus fumigates-infected mice. In spiked samples, the Tempus system performed better than the PAXgene system as it detected 100% of all samples spiked with 10 or 20 germinated Aspergillus conidia/ml blood sample as compared to the PAXgene system which detected 33% and 56% of the samples spiked with 10 or 20 conidia/ml, respectively. The stabilization of fungal nucleic acids in blood samples and its efficient isolation by a commercial method is an important step in the development of standardized molecular diagnostic tools that are needed to improve the outcomes for individuals with IA

    Dynamics of extracellular release of Aspergillus fumigatus DNA and galactomannan during growth in blood and serum

    No full text
    Aspergillus fumigatus is the major cause of invasive aspergillosis (IA), a disease associated with high rates of morbidity and mortality in patients undergoing treatment for haematological malignancies. This study investigated A. fumigatus growth in vitro and in a murine model of IA in order to provide insights into the dynamics of extracellular DNA and galactomannan (GM) release and their relevance to early diagnosis of IA. Following inoculation of whole blood with 20 A. fumigatus conidia ml-1, DNA that corresponded to the inoculum could be detected by PCR but GM was not detected in plasma separated from the blood sample, indicating that the fungus did not grow in whole blood. The quantities of DNA detected by PCR, and GM, were proportional to the amount of fungal biomass present in vitro. Fungal DNA could be detected in the sera of mice experimentally infected with A. fumigatus with maximum detection in cyclophosphamide-treated mice
    corecore