1,051 research outputs found

    Lactoferrin. A natural glycoprotein involved in iron and inflammatory homeostasis

    Get PDF
    Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 µg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes

    Efficacy of lactoferrin oral administration in the treatment of anemia and anemia of inflammation in pregnant and non-pregnant women: an interventional study

    Get PDF
    The discovery of the ferroportin-hepcidin complex has led to a critical review on the treatment of anemia and anemia of inflammation (AI). Ferroportin, the only known mammalian iron exporter from cells to blood, is negatively regulated by hepcidin, a hormone peptide able to bind to ferroportin, leading to its degradation. Therefore, new efficient therapeutic interventions acting on hepcidin and ferroportin are imperative to manage anemia and AI. Bovine milk derivative lactoferrin (bLf), a glycoprotein able to chelate two ferric ions per molecule, is emerging as a natural anti-inflammatory substance able to modulate hepcidin and ferroportin synthesis through the down-regulation of interleukin-6 (IL-6). Here, an interventional study (ClinicalTrials.gov Identifier: NCT01221844) was conducted by orally administering 100 mg of 20-30% iron-saturated bLf (corresponding to 70-84 μg of elemental iron) twice a day. This treatment was compared with the Italian standard therapy, consisting in the oral administration of 329.7 mg of ferrous sulfate once a day (corresponding to 105 mg of elemental iron). Treatments were carried out on 29 anemic women with minor ß-thalassemia (20 pregnant and 9 non-pregnant), 149 women with hereditary thrombophilia (HT) (70 pregnant and 79 non-pregnant) affected by AI and 20 anemic pregnant women suffering from various pathologies. In anemic pregnant and non-pregnant women with minor ß-thalassemia, presenting undetectable hepcidin levels, differently from ferrous sulfate management, bLf decreased IL-6 (from 25 ± 8 to 6 ± 3 pg/ml) and increased total serum iron (TSI) (from 54 ± 17 to 80 ± 9 μg/dl). BLf was also more efficient than ferrous sulfate in AI treatment in HT pregnant and non-pregnant women by decreasing both serum IL-6 (from 89 ± 8 to 58 ± 6 pg/ml) and hepcidin (from 115 ± 23 to 65 ± 10 ng/ml), thus increasing hematological parameters, such as the number of red blood cells (RBCs), the concentration of hemoglobin, TSI and serum ferritin. BLf was also efficient in treating anemia in other pathological pregnancies. Taken together all the results, bLf, showing a greater benefit and efficacy than the standard ferrous sulfate management, can be considered as a promising compound in treating anemia and AI through its ability to down-regulate IL-6, thus restoring ferroportin-mediated iron export from cells to blood in a hepcidin-dependent or independent way

    A Dog with Pseudo-Addison Disease Associated with Trichuris vulpis Infection

    Get PDF
    A female Rottweiler dog was presented with a history of intermittent vomiting and diarrhoea, dysorexia, weakness, and weight loss. Haemocytometry and biochemistry values were within normal ranges except for electrolyte analyses, that demonstrated hyponatremia and hyperkalemia with a decreased sodium/potassium ratio. A diagnosis of hypoadrenocorticism was suspected. Basal and post-ACTH stimulation cortisolemia were within the normal values. Electrocardiography was normal, and thoracic radiography showed no significant modifications. On abdominal ultrasonography, adrenal glands appeared normal, while the bowel was distended, and several thin linear hyperechoic objects floating in the lumen were observed. Two adult female whipworms (Trichuris vulpis) were collected following bowel irrigation. Anthelmintic treatment against the parasite was curative

    Biotimer assay: A reliable and rapid method for the evaluation of central venous catheter microbial colonization

    Get PDF
    Adherent bacteria and biofilm frequently colonize central venous catheters (CVCs). CVC colonization is correlated to infections and particularly to bloodstream ones. The classical microbiological methods to determine of CVC colonization are not fully reliable and are time-consuming. BioTimer Assay (BTA) is a biological method already used to count bacteria adherent to abiotic surfaces and biofilm without sample manipulation. BTA employs specific reagents whose color changed according to bacterial metabolism. BTA is based on the principle that a metabolic reaction will be faster when more bacteria are present in the sample. Therefore, the time required for color changes of BTA reagents determines the number of bacteria present in the sample through a correlation line. Here, for the first time, we applied BTA and a specifically developed laboratory procedure to evaluate CVC colonization in comparison with the routine microbiological method (RMM). 125 CVCs removed from patients for suspected catheter-related bloodstream infection (CRBSI) or at hospital discharge were examined. BTA was reliable in assessing sterility and CVC colonization (100% agreement with RMM) and in recognizing the presence of fermenting or non-fermenting bacteria (97.1% agreement with RMM) shortening the analytical time by between 2- and 3-fold. Moreover, the reliability of BTA as early alert of CRBSI was evaluated. The sensitivity, specificity, positive, and negative predictive values for BTA as an early alert of CRBSI were 100, 40.0, 88.8 and 100%, respectively. In conclusion, BTA and the related laboratory procedure should be incorporated into routine microbiological methods since it can be considered a reliable tool to evaluate CVC colonization in a very short time and a rapid alert for CRBSIs

    Combined use of x-ray fluorescence microscopy, phase contrast imaging for high resolution quantitative iron mapping in inflamed cells

    Get PDF
    X-ray fluorescence microscopy (XRFM) is a powerful technique to detect and localize elements in cells. To derive information useful for biology and medicine, it is essential not only to localize, but also to map quantitatively the element concentration. Here we applied quantitative XRFM to iron in phagocytic cells. Iron, a primary component of living cells, can become toxic when present in excess. In human fluids, free iron is maintained at 10-18 M concentration thanks to iron binding proteins as lactoferrin (Lf). The iron homeostasis, involving the physiological ratio of iron between tissues/secretions and blood, is strictly regulated by ferroportin, the sole protein able to export iron from cells to blood. Inflammatory processes induced by lipopolysaccharide (LPS) or bacterial pathoge inhibit ferroportin synthesis in epithelial and phagocytic cells thus hindering iron export, increasing intracellular iron and bacterial multiplication. In this respect, Lf is emerging as an important regulator of both iron and inflammatory homeostasis. Here we studied phagocytic cells inflamed by bacterial LPS and untreated or treated with milk derived bovine Lf. Quantitative mapping of iron concentration and mass fraction at high spatial resolution is obtained combining X-ray fluorescence microscopy, atomic force microscopy and synchrotron phase contrast imaging

    Lactoferrin as Immune-Enhancement Strategy for SARS-CoV-2 Infection in Alzheimer's Disease Patients.

    Get PDF
    Coronavirus 2 (SARS-CoV2) (COVID-19) causes severe acute respiratory syndrome. Severe illness of COVID-19 largely occurs in older people and recent evidence indicates that demented patients have higher risk for COVID-19. Additionally, COVID-19 further enhances the vulnerability of older adults with cognitive damage. A balance between the immune and inflammatory response is necessary to control the infection. Thus, antimicrobial and anti-inflammatory drugs are hopeful therapeutic agents for the treatment of COVID-19. Accumulating evidence suggests that lactoferrin (Lf) is active against SARS-CoV-2, likely due to its potent antiviral and anti-inflammatory actions that ultimately improves immune system responses. Remarkably, salivary Lf levels are significantly reduced in different Alzheimer's disease (AD) stages, which may reflect AD-related immunological disturbances, leading to reduced defense mechanisms against viral pathogens and an increase of the COVID-19 susceptibility. Overall, there is an urgent necessity to protect AD patients against COVID-19, decreasing the risk of viral infections. In this context, we propose bovine Lf (bLf) as a promising preventive therapeutic tool to minimize COVID-19 risk in patients with dementia or AD.This study was supported by grants from Instituto de Salud Carlos III (FIS21/00679 to EC and JH-G and PI21/00183 to FB), FEDER, Comunidad de Madrid (S2017/BMD-3700; NEUROMETAB-CM to EC), and CIBERNED (CB07/502 to EC); Spanish Ministry of Economy and Competitiveness (PID2020-119978RB-I00 to JC), CIBERNED, the Research Program for a Long-Life Society (0551_PSL_6_E to JC), the Junta de Andalucía (PY20_00858 to J.L.C.), the Andalucía-FEDER Program (UPO-1380913 to JC).S

    Effects of usnic acid to prevent infections by creating a protective barrier in an in vitro study

    Get PDF
    Nasal sprays are medical devices useful for preventing infection and the subsequent spread of airborne pathogens. The effectiveness of these devices depends on the activity of chosen compounds which can create a physical barrier against viral uptake as well as incorporate different substances with antiviral activity. Among antiviral compounds, UA, a dibenzofuran derived from lichens, has the mechanical ability to modify its structure by creating a branch capable of forming a protective barrier. The mechanical ability of UA to protect cells from virus infection was investigated by analyzing the branching capacity of UA, and then the protection mechanism in an in vitro model was also studied. As expected, UA at 37 °C was able to create a barrier confirming its ramification property. At the same time, UA was able to block the infection of Vero E6 and HNEpC cells by interfering with a biological interaction between cells and viruses as revealed also by the UA quantification. Therefore, UA can block virus activity through a mechanical barrier effect without altering the physiological nasal homeostasis. The findings of this research could be of great relevance in view of the growing alarm regarding the spread of airborne viral diseases

    Effect of bovine lactoferrin on chlamydia trachomatis infection and inflammation.

    Get PDF
    Chlamydia trachomatis is an obligate, intracellular pathogen responsible for the most common sexually transmitted bacterial disease worldwide, causing acute and chronic infections. The acute infection is susceptible to antibiotics, whereas the chronic one needs prolonged therapies, thus increasing the risk of developing antibiotic resistance. Novel alternative therapies are needed. The intracellular development of C. trachomatis requires essential nutrients, including iron. Iron-chelating drugs inhibit C. trachomatis developmental cycle. Lactoferrin (Lf), a pleiotropic iron binding glycoprotein, could be a promising candidate against C. trachomatis infection. Similarly to the efficacy against other intracellular pathogens, bovine Lf (bLf) could both interfere with C. trachomatis entry into epithelial cells and exert an anti-inflammatory activity. In vitro and in vivo effects of bLf against C. trachomatis infectious and inflammatory process has been investigated. BLf inhibits C. trachomatis entry into host cells when incubated with cell monolayers before or at the moment of the infection and down-regulates IL-6/IL-8 synthesized by infected cells. Six out of 7 pregnant women asymptomatically infected by C. trachomatis, after 30 days of bLf intravaginal administration, were negative for C. trachomatis and showed a decrease of cervical IL-6 levels. This is the first time that the bLf protective effect against C. trachomatis infection has been demonstrated
    corecore