403 research outputs found
Point process-based modeling of multiple debris flow landslides using INLA: an application to the 2009 Messina disaster
We develop a stochastic modeling approach based on spatial point processes of
log-Gaussian Cox type for a collection of around 5000 landslide events provoked
by a precipitation trigger in Sicily, Italy. Through the embedding into a
hierarchical Bayesian estimation framework, we can use the Integrated Nested
Laplace Approximation methodology to make inference and obtain the posterior
estimates. Several mapping units are useful to partition a given study area in
landslide prediction studies. These units hierarchically subdivide the
geographic space from the highest grid-based resolution to the stronger
morphodynamic-oriented slope units. Here we integrate both mapping units into a
single hierarchical model, by treating the landslide triggering locations as a
random point pattern. This approach diverges fundamentally from the unanimously
used presence-absence structure for areal units since we focus on modeling the
expected landslide count jointly within the two mapping units. Predicting this
landslide intensity provides more detailed and complete information as compared
to the classically used susceptibility mapping approach based on relative
probabilities. To illustrate the model's versatility, we compute absolute
probability maps of landslide occurrences and check its predictive power over
space. While the landslide community typically produces spatial predictive
models for landslides only in the sense that covariates are spatially
distributed, no actual spatial dependence has been explicitly integrated so far
for landslide susceptibility. Our novel approach features a spatial latent
effect defined at the slope unit level, allowing us to assess the spatial
influence that remains unexplained by the covariates in the model
OPTIMIZING STOCHASTIC SUSCEPTIBILITY MODELLING FOR DEBRIS FLOW LANDSLIDES: MODEL EXPORTATION, STATISTICAL TECHNIQUES COMPARISON AND USE OF REMOTE SENSING DERIVED PREDICTORS. APPLICATIONS TO THE 2009 MESSINA EVENT.
Il presente lavoro di ricerca è stato sviluppato al fine di approfondire approcci metodologici nell'ambito della sucscettibilità da frana. In particolare, il tema centrale della ricerca è rappresentato dal tema specifico dell'esportazione spaziale di modelli di suscettibilità nell'area mediterranea. All'interno del topic specifico dell'esportazione di modelli predittivi spaziali sono state approfondite tematiche relative all'utilizzo di differenti algoritmi o di differenti sorgenti, derivate da DEM o da coperture satellitari.The present work has been developed in order to enhance current methodological approaches within the big picture of the landslide susceptibility. In particular, the central topic was the spatial exportation of landslide susceptibility models within the Mediterranean sector. Within the specific subject pertaining to the spatial exportation of predictive models, different algorithms as well as different data sources have been tested. Data sources experiments assessed the integration of DEM- and remotely sensed- derived parameters in order to improve the landslide prediction
Full seismic waveform analysis combined with transformer neural networks improves coseismic landslide prediction
Seismic waves can shake mountainous landscapes, triggering thousands of landslides. Regionalscale landslide models primarily rely on shaking intensity parameters obtained by simplifying ground motion time-series into peak scalar values. Such an approach neglects the contribution of ground motion phase and amplitude and their variations over space and time. Here, we address this problem by developing an explainable deep-learning model able to treat the entire wavefield and benchmark it against a model equipped with scalar intensity parameters. The experiments run on the area affected by the 2015Mw7.8 Gorkha, Nepal earthquake reveal a 16% improvement in predictive capacity whenincorporating full waveforms. This improvement is achieved mainly on gentle (~25°) hillslopes exposed to low ground shaking (~0.2 m/s). Moreover, we can largely attribute this improvement to the ground motion before and much after the peak velocity arrival. This underscores the limits of single-intensitymeasures and the untapped potential of full waveform information
Zero viscosity limit of the Oseen equations in a channel
Oseen equations in the channel are considered. We give an explicit solution formula in terms of the inverse heat operators and of projection operators. This solution formula is used for the analysis of the behavior of the Oseen equations in the zero viscosity limit. We prove that the solution of Oseen equations converges in W1,2 to the solution of the linearized Euler equations outside the boundary layer and to the solution of the linearized Prandtl equations inside the boundary layer. © 2001 Society for Industrial and Applied Mathematics
On the Fly Orchestration of Unikernels: Tuning and Performance Evaluation of Virtual Infrastructure Managers
Network operators are facing significant challenges meeting the demand for
more bandwidth, agile infrastructures, innovative services, while keeping costs
low. Network Functions Virtualization (NFV) and Cloud Computing are emerging as
key trends of 5G network architectures, providing flexibility, fast
instantiation times, support of Commercial Off The Shelf hardware and
significant cost savings. NFV leverages Cloud Computing principles to move the
data-plane network functions from expensive, closed and proprietary hardware to
the so-called Virtual Network Functions (VNFs). In this paper we deal with the
management of virtual computing resources (Unikernels) for the execution of
VNFs. This functionality is performed by the Virtual Infrastructure Manager
(VIM) in the NFV MANagement and Orchestration (MANO) reference architecture. We
discuss the instantiation process of virtual resources and propose a generic
reference model, starting from the analysis of three open source VIMs, namely
OpenStack, Nomad and OpenVIM. We improve the aforementioned VIMs introducing
the support for special-purpose Unikernels and aiming at reducing the duration
of the instantiation process. We evaluate some performance aspects of the VIMs,
considering both stock and tuned versions. The VIM extensions and performance
evaluation tools are available under a liberal open source licence
Joint modelling of landslide counts and sizes using spatial marked point processes with sub-asymptotic mark distributions
To accurately quantify landslide hazard in a region of Turkey, we develop new marked point-process models within a Bayesian hierarchical framework for the joint prediction of landslide counts and sizes. We leverage mark distributions justified by extreme-value theory, and specifically propose ‘sub-asymptotic’ distributions to flexibly model landslide sizes from low to high quantiles. The use of intrinsic conditional autoregressive priors, and a customised adaptive Markov chain Monte Carlo algorithm, allow for fast fully Bayesian inference. We show that sub-asymptotic mark distributions provide improved predictions of large landslide sizes, and use our model for risk assessment and hazard mapping.</p
- …