2,561 research outputs found
A current disruption mechanism in the neutral sheet for triggering substorm expansions
Two main areas were addressed in support of an effort to understand mechanism responsible for the broadband electrostatic noise (BEN) observed in the magnetotail. The first area concerns the generation of BEN in the boundary layer region of the magnetotail whereas the second area concerns the occassional presence of BEN in the neutral sheet region. For the generation of BEN in the boundary layer region, a hybrid simulation code was developed to perform reliable longtime, quiet, highly resolved simulations of field aligned electron and ion beam flow. The result of the simulation shows that broadband emissions cannot be generated by beam-plasma instability if realistic values of the ion beam parameters are used. The waves generated from beam-plasma instability are highly discrete and are of high frequencies. For the plasma sheet boundary layer condition, the wave frequencies are in the kHz range, which is incompatible with the observation that the peak power in BEN occur in the 10's of Hz range. It was found that the BEN characteristics are more consistent with lower hybrid drift instability. For the occasional presence of BEN in the neutral sheet region, a linear analysis of the kinetic cross-field streaming instability appropriate to the neutral sheet condition just prior to onset of substorm expansion was performed. By solving numerically the dispersion relation, it was found that the instability has a growth time comparable to the onset time scale of substorm onset. The excited waves have a mixed polarization in the lower hybrid frequency range. The imposed drift driving the instability corresponds to unmagnetized ions undergoing current sheet acceleration in the presence of a cross-tail electric field. The required electric field strength is in the 10 mV/m range which is well within the observed electric field values detected in the neutral sheet during substorms. This finding can potentially account for the disruption of cross-tail current and its diversion to the ionosphere to form the substorm current wedge. Furthermore, a number of features associated with substorm expansion onset can be understood based on this substorm onset scenario
Trial of aerosolised surfactant for preterm infants with respiratory distress syndrome
Objective To evaluate the safety of an aerosolised surfactant, SF-RI 1, administered via nasal continuous positive airway pressure (nCPAP) and a prototype breath synchronisation device (AeroFact), to preterm infants with respiratory distress syndrome (RDS). Design Multicentre, open-label, dose-escalation study with historical controls. Setting Newborn intensive care units at Mater Mothers' Hospital, Brisbane, and Royal Hospital for Women, Sydney, Australia. Patients Infants 26 weeks through 30 weeks gestation who required nCPAP 6-8 cmH 2 O and fraction of inspired oxygen (FiO 2) 2.4, nCPAP >8 cmH 2 O, arterial carbon dioxide >65 mm Hg, pH <7.20 or three severe apnoeas within 6 hours during the first 72 hours of life. Other outcomes included tolerance of the AeroFact treatment and complications of prematurity. Results 10 infants were enrolled in part 1 and 21 in part 2 and were compared with 93 historical controls. No safety issues were identified. In part 2, 6 of 21 (29%) AeroFact-treated infants compared with 30 of 63 (48%) control infants met failure criteria. Kaplan-Meier analysis of patients in part 2 showed a trend towards decreased rate of study failure in the AeroFact-treated infants compared with historical controls (p=0.10). Conclusion The AeroFact system can safely deliver aerosolised surfactant to preterm infants with RDS who are on nCPAP. Trial registration number ACTRN12617001458325
Oxygen impurities in NiAl: Relaxation effects
We have used a full-potential linear muffin-tin orbital method to calculate
the effects of oxygen impurities on the electronic structure of NiAl. Using the
supercell method with a 16-atom supercell we have investigated the cases where
an oxygen atom is substitutionally placed at either a nickel or an aluminum
site. Full relaxation of the atoms within the supercell was allowed. We found
that oxygen prefers to occupy a nickel site over an aluminum site with a site
selection energy of 138 mRy (21,370 K). An oxygen atom placed at an aluminum
site is found to cause a substantial relaxation of its nickel neighbors away
from it. In contrast, this steric repulsion is hardly present when the oxygen
atom occupies the nickel site and is surrounded by aluminum neighbors. We
comment on the possible relation of this effect to the pesting degradation
phenomenon (essentially spontaneous disintegration in air) in nickel
aluminides.Comment: To appear in Phys. Rev. B (Aug. 15, 2001
Pair production of the T-odd leptons at the LHC
The T-odd leptons predicted by the littlest model with T-parity can
be pair produced via the subprocesses ,
, and (= or
) at the Large Hadron Collider . We estimate the hadronic
production cross sections for all of these processes and give a simply
phenomenology analysis. We find that the cross sections for most of the above
processes are very small. However, the value of the cross section for the
process can reach .Comment: 12 pages, 2 figure
Thermochemiluminescent peroxide crystals
Chemiluminescence, a process of transduction of energy stored within chemical bonds of ground-state reactants into light via high-energy excited intermediates, is known in solution, but has remained undetected in macroscopic crystalline solids. By detecting thermally induced chemiluminescence from centimeter-size crystals of an organic peroxide here we demonstrate direct transduction of heat into light by thermochemiluminescence of bulk crystals. Heating of crystals of lophine hydroperoxide to ~115 °C results in detectable emission of blue-green light with maximum at 530 nm with low chemiluminescent quantum yield [(2.1 ± 0.1) × 10 ‒7 E mol ‒1 ]. Spectral comparison of the thermochemiluminescence in the solid state and in solution revealed that the solid-state thermochemiluminescence of lophine peroxide is due to emission from deprotonated lophine. With selected 1,2-dioxetane, endoperoxide and aroyl peroxide we also establish that the thermochemiluminescence is common for crystalline peroxides, with the color of the emitted light varying from blue to green to red
#Bieber + #Blast = #BieberBlast: Early Prediction of Popular Hashtag Compounds
Compounding of natural language units is a very common phenomena. In this
paper, we show, for the first time, that Twitter hashtags which, could be
considered as correlates of such linguistic units, undergo compounding. We
identify reasons for this compounding and propose a prediction model that can
identify with 77.07% accuracy if a pair of hashtags compounding in the near
future (i.e., 2 months after compounding) shall become popular. At longer times
T = 6, 10 months the accuracies are 77.52% and 79.13% respectively. This
technique has strong implications to trending hashtag recommendation since
newly formed hashtag compounds can be recommended early, even before the
compounding has taken place. Further, humans can predict compounds with an
overall accuracy of only 48.7% (treated as baseline). Notably, while humans can
discriminate the relatively easier cases, the automatic framework is successful
in classifying the relatively harder cases.Comment: 14 pages, 4 figures, 9 tables, published in CSCW (Computer-Supported
Cooperative Work and Social Computing) 2016. in Proceedings of 19th ACM
conference on Computer-Supported Cooperative Work and Social Computing (CSCW
2016
Expression of Bone Morphogenetic Protein-2 in the Chondrogenic and Ossifying Sites of Calcific Tendinopathy and Traumatic Tendon Injury Rat Models
<p>Abstract</p> <p>Background</p> <p>Ectopic chondrogenesis and ossification were observed in a degenerative collagenase-induced calcific tendinopathy model and to a lesser extent, in a patellar tendon traumatic injury model. We hypothesized that expression of bone morphogenetic protein-2 (BMP-2) contributed to ectopic chondrogenesis and ossification. This study aimed to study the spatial and temporal expression of BMP-2 in our animal models.</p> <p>Methods</p> <p>Seventy-two rats were used, with 36 rats each subjected to central one-third patellar tendon window injury (C1/3 group) and collagenase-induced tendon injury (CI group), respectively. The contralateral limb served as controls. At week 2, 4 and 12, 12 rats in each group were sacrificed for immunohistochemistry and RT-PCR of BMP-2.</p> <p>Results</p> <p>For CI group, weak signal was observed at the tendon matrix at week 2. At week 4, matrix around chondrocyte-like cells was also stained in some samples. In one sample, calcification was observed and the BMP-2 signal was observed both in the calcific matrix and the embedded chondrocyte-like cells. At week 12, the staining was observed mainly in the calcific matrix. Similar result was observed in C1/3 group though the immunopositive staining of BMP-2 was generally weaker. There was significant increase in BMP-2 mRNA compared to that in the contralateral side at week 2 and the level became insignificantly different at week 12 in CI group. No significant increase in BMP-2 mRNA was observed in C1/3 group at all time points.</p> <p>Conclusion</p> <p>Ectopic expression of BMP-2 might induce tissue transformation into ectopic bone/cartilage and promoted structural degeneration in calcific tendinopathy.</p
- …