99 research outputs found

    Targeting p53 via JNK Pathway: A Novel Role of RITA for Apoptotic Signaling in Multiple Myeloma

    Get PDF
    The low frequency of p53 alterations e.g., mutations/deletions (∼10%) in multiple myeloma (MM) makes this tumor type an ideal candidate for p53-targeted therapies. RITA is a small molecule which can induce apoptosis in tumor cells by activating the p53 pathway. We previously showed that RITA strongly activates p53 while selectively inhibiting growth of MM cells without inducing genotoxicity, indicating its potential as a drug lead for p53-targeted therapy in MM. However, the molecular mechanisms underlying the pro-apoptotic effect of RITA are largely undefined. Gene expression analysis by microarray identified a significant number of differentially expressed genes associated with stress response including c-Jun N-terminal kinase (JNK) signaling pathway. By Western blot analysis we further confirmed that RITA induced activation of p53 in conjunction with up-regulation of phosphorylated ASK-1, MKK-4 and c-Jun. These results suggest that RITA induced the activation of JNK signaling. Chromatin immunoprecipitation (ChIP) analysis showed that activated c-Jun binds to the activator protein-1 (AP-1) binding site of the p53 promoter region. Disruption of the JNK signal pathway by small interfering RNA (siRNA) against JNK or JNK specific inhibitor, SP-600125 inhibited the activation of p53 and attenuated apoptosis induced by RITA in myeloma cells carrying wild type p53. On the other hand, p53 transcriptional inhibitor, PFT-α or p53 siRNA not only inhibited the activation of p53 transcriptional targets but also blocked the activation of c-Jun suggesting the presence of a positive feedback loop between p53 and JNK. In addition, RITA in combination with dexamethasone, known as a JNK activator, displays synergistic cytotoxic responses in MM cell lines and patient samples. Our study unveils a previously undescribed mechanism of RITA-induced p53-mediated apoptosis through JNK signaling pathway and provides the rationale for combination of p53 activating drugs with JNK activators in the treatment of MM

    Suppressing miRNA-15a/-16 expression by interleukin-6 enhances drug-resistance in myeloma cells

    Get PDF
    The bone marrow microenvironment facilitates the survival, differentiation, and proliferation of myeloma (MM) cells. This study identified that microRNA-15a and -16 expressions tightly correlated with proliferation and drug sensitivity of MM cells. miRNA-15a/-16 expression in MM cells was significantly increased after treatment with cytotoxic agents. The interaction of bone marrow stromal cells (BMSC) with MM cells resulted in decreased miRNA-15a/-16 expression and promoted the survival of the MM cells. Interleukin-6 (IL-6) produced by BMSCs suppressed the expression of miRNA-15a and 16 in a time- and dose- dependent pattern, with the suppression on miRNA-15a being more significant than on miRNA-16. miRNA-15a-transfected MM cells were found to be arrested in G1/S checkpoint, and the transfected MM cells had decreased growth and survival. In conclusion, our data suggest that via suppressing miRNA-15a and -16 expressions, IL-6 secreted by BMSCs promotes drug-resistance in myeloma cells

    Critical Role of AKT in Myeloma-induced Osteoclast Formation and Osteolysis

    Get PDF
    Abnormal osteoclast formation and osteolysis are the hallmarks of multiple myeloma (MM) bone disease, yet the underlying molecular mechanisms are incompletely understood. Here, we show that the AKT pathway was up-regulated in primary bone marrow monocytes (BMM) from patients with MM, which resulted in sustained high expression of the receptor activator of NF-κB (RANK) in osteoclast precursors. The up-regulation of RANK expression and osteoclast formation in the MM BMM cultures was blocked by AKT inhibition. Conditioned media from MM cell cultures activated AKT and increased RANK expression and osteoclast formation in BMM cultures. Inhibiting AKT in cultured MM cells decreased their growth and ability to promote osteoclast formation. Of clinical significance, systemic administration of the AKT inhibitor LY294002 blocked the formation of tumor tissues in the bone marrow cavity and essentially abolished the MM-induced osteoclast formation and osteolysis in SCID mice. The level of activating transcription factor 4 (ATF4) protein was up-regulated in the BMM cultures from multiple myeloma patients. Adenoviral overexpression of ATF4 activated RANK expression in osteoclast precursors. These results demonstrate a new role of AKT in the MM promotion of osteoclast formation and bone osteolysis through, at least in part, the ATF4-dependent up-regulation of RANK expression in osteoclast precursors

    Micro-RNAs, New performers in multiple myeloma bone marrow microenvironment

    No full text
    Abstract The established interaction between multiple myeloma cells and bone marrow microenvironment components provides malignant cells with various survival, growth and drug resistance signals. As a new concept, identification of miRNAs and their related gene/protein targets, signaling molecules and pathways in the context of bone marrow microenvironment will help understanding more deeply the pathogenesis of the disease and possible mechanisms underlying environment-induced drug resistance. Recent studies suggest that bone marrow stromal cells can modulate some miRNAs (miR-21, miR-15a/16) in multiple myeloma cells through direct adhesion, cytokine secretion or transfer of miRNA-containing exosomes, however; the specific miRNA targets are not clear. In spite of a remarkable progress in understanding myeloma biology and therapy, the disease persists to be hard to treat. This review will discuss the most recent findings on miRNAs expression and function in the context of bone marrow microenvironment highlighting the miRNAs as potential therapeutic targets in multiple myeloma

    Immunotherapy for multiple myeloma: new chances and hope

    No full text

    Targeting p53 by small molecules in hematological malignancies

    No full text
    Abstract p53 is a powerful tumor suppressor and is an attractive cancer therapeutic target. A breakthrough in cancer research came from the discovery of the drugs which are capable of reactivating p53 function. Most anti-cancer agents, from traditional chemo- and radiation therapies to more recently developed non-peptide small molecules exert their effects by enhancing the anti-proliferative activities of p53. Small molecules such as nutlin, RITA, and PRIMA-1 that can activate p53 have shown their anti-tumor effects in different types of hematological malignancies. Importantly, nutlin and PRIMA-1 have successfully reached the stage of phase I/II clinical trials in at least one type of hematological cancer. Thus, the pharmacological activation of p53 by these small molecules has a major clinical impact on prognostic use and targeted drug design. In the current review, we present the recent achievements in p53 research using small molecules in hematological malignancies. Anticancer activity of different classes of compounds targeting the p53 signaling pathway and their mechanism of action are discussed. In addition, we discuss how p53 tumor suppressor protein holds promise as a drug target for recent and future novel therapies in these diseases
    • …
    corecore