167 research outputs found

    Utilization of satellite imagery by in-flight aircraft

    Get PDF
    Present and future utilization of satellite weather data by commercial aircraft while in flight was assessed. Weather information of interest to aviation that is available or will become available with future geostationary satellites includes the following: severe weather areas, jet stream location, weather observation at destination airport, fog areas, and vertical temperature profiles. Utilization of this information by in-flight aircraft is especially beneficial for flights over the oceans or over remote land areas where surface-based observations and communications are sparse and inadequate

    An evaluation of electrochemical concentration Cell (ECC) sonde measurements of atmospheric ozone

    Get PDF
    Using Dobson spectrophotometer measurements of total ozone as a comparison, an analysis of the electrochemical concentration cell (ECC) ozonesonde's measurement accuracy is presented. Days of conjunctive ECC-Dobson observations (from 1970 to 1976 at Wallops Flight Center) provide a set of 123 pairs of total ozone values. Sample set statistics are generated with means and standard deviations of total ozone values and differences being noted. An in-depth study of factors such as time assumptions used in calculating residual ozone, and other possible sources of errors are examined. A study of ECC ozone profiles is also presented with an evaluation of sonde measurement of seasonal trends, altitude or peak ozone concentration, and other important ozone parameters. Short-period changes in total ozone using Dobson data during the observational period are also described

    Optimum radars and filters for the passive sphere system

    Get PDF
    Studies have been conducted to determine the influence of the tracking radar and data reduction technique on the accuracy of the meteorological measurements made in the 30 to 100 kilometer altitude region by the ROBIN passive falling sphere. A survey of accuracy requirements was made of agencies interested in data from this region of the atmosphere. In light of these requirements, various types of radars were evaluated to determine the tracking system most applicable to the ROBIN, and methods were developed to compute the errors in wind and density that arise from noise errors in the radar supplied data. The effects of launch conditions on the measurements were also examined. Conclusions and recommendations have been made concerning the optimum tracking and data reduction techniques for the ROBIN falling sphere system

    Performance of an alpha-vane and pitot tube in simulated heavy rain environment

    Get PDF
    Experimental tests were conducted in the UDRI Environmental Wind/Rain Tunnel to establish the performance of an alpha-vane, that measures angle of attack, in a simulated heavy rain environment. The tests consisted of emersing the alpha-vane in an airstream with a concurrent water spray penetrating vertically through the airstream. The direction of the spray was varied to make an angle of 5.8 to 18 deg with the airstream direction in order to simulate the conditions that occur when an aircraft lands in a heavy rain environment. Rainrates simulated varied from 1000 to 1200 mm/hr which are the most severe ever expected to be encountered by an aircraft over even a 30 second period. Tunnel airspeeds ranged from 85 to 125 miles per hour. The results showed that even the most severe rainrates produced a misalignment in the alpha-vane of only 1 deg away from the airstream direction. Thus for normal rain conditions experienced by landing aircraft no significant deterioration in alpha-vane performance is expected

    Aerodynamic penalties of heavy rain on a landing aircraft

    Get PDF
    The aerodynamic penalties of very heavy rain on landing aircraft were investigated. Based on severity and frequency of occurrence, the rainfall rates of 100 mm/hr, 500 mm/hr, and 2000 mm/hr were designated, respectively, as heavy, severe, and incredible. The overall and local collection efficiencies of an aircraft encountering these rains were calculated. The analysis was based on raindrop trajectories in potential flow about an aircraft. All raindrops impinging on the aircraft are assumed to take on its speed. The momentum loss from the rain impact was later used in a landing simulation program. The local collection efficiency was used in estimating the aerodynamic roughness of an aircraft in heavy rain. The drag increase from this roughness was calculated. A number of landing simulations under a fixed stick assumption were done. Serious landing shortfalls were found for either momentum or drag penalties and especially large shortfalls for the combination of both. The latter shortfalls are comparable to those found for severe wind shear conditions

    Effect of rawinsonde errors on rocketsonde density and pressure profiles: An error analysis of the Rawinsonde System

    Get PDF
    An initial value of pressure is required to derive the density and pressure profiles of the rocketborne rocketsonde sensor. This tie-on pressure value is obtained from the nearest rawinsonde launch at an altitude where overlapping rawinsonde and rocketsonde measurements occur. An error analysis was performed of the error sources in these sensors that contribute to the error in the tie-on pressure. It was determined that significant tie-on pressure errors result from radiation errors in the rawinsonde rod thermistor, and temperature calibration bias errors. To minimize the effect of these errors radiation corrections should be made to the rawinsonde temperature and the tie-on altitude should be chosen at the lowest altitude of overlapping data. Under these conditions the tie-on error, and consequently the resulting error in the Datasonde pressure and density profiles is less tha 1%. The effect of rawinsonde pressure and temperature errors on the wind and temperature versus height profiles of the rawinsonde was also determined

    Meteorological needs of the aviation community

    Get PDF
    A study was conducted to determine the important meteorological needs of the aviation community and to recommend research in those areas judged most beneficial. The study was valuable in that it provided a comprehensive list of suspected meteorological deficiencies and ideas for research programs relative to these deficiencies. The list and ideas were generated from contacts with various pilots, air traffic controllers, and meteorologists

    Preliminary estimates of radiosonde thermistor errors

    Get PDF
    Radiosonde temperature measurements are subject to errors, not the least of which is the effect of long- and short-wave radiation. Methods of adjusting the daytime temperatures to a nighttime equivalent are used by some analysis centers. Other than providing consistent observations for analysis this procedure does not provide a true correction. The literature discusses the problem of radiosonde temperature errors but it is not apparent what effort, if any, has been taken to quantify these errors. To accomplish the latter, radiosondes containing multiple thermistors with different coatings were flown at Goddard Space Flight Center/Wallops Flight Facility. The coatings employed had different spectral characteristics and, therefore, different adsorption and emissivity properties. Discrimination of the recorded temperatures enabled day and night correction values to be determined for the US standard white-coated rod thermistor. The correction magnitudes are given and a comparison of US measured temperatures before and after correction are compared with temperatures measured with the Vaisala radiosonde. The corrections are in the proper direction, day and night, and reduce day-night temperature differences to less than 0.5 C between surface and 30 hPa. The present uncorrected temperatures used with the Viz radiosonde have day-night differences that exceed 1 C at levels below 90 hPa. Additional measurements are planned to confirm these preliminary results and determine the solar elevation angle effect on the corrections. The technique used to obtain the corrections may also be used to recover a true absolute value and might be considered a valuable contribution to the meteorological community for use as a reference instrument

    A new high-speed IR camera system

    Get PDF
    A multi-organizational team at the Goddard Space Flight Center is developing a new far infrared (FIR) camera system which furthers the state of the art for this type of instrument by the incorporating recent advances in several technological disciplines. All aspects of the camera system are optimized for operation at the high data rates required for astronomical observations in the far infrared. The instrument is built around a Blocked Impurity Band (BIB) detector array which exhibits responsivity over a broad wavelength band and which is capable of operating at 1000 frames/sec, and consists of a focal plane dewar, a compact camera head electronics package, and a Digital Signal Processor (DSP)-based data system residing in a standard 486 personal computer. In this paper we discuss the overall system architecture, the focal plane dewar, and advanced features and design considerations for the electronics. This system, or one derived from it, may prove useful for many commercial and/or industrial infrared imaging or spectroscopic applications, including thermal machine vision for robotic manufacturing, photographic observation of short-duration thermal events such as combustion or chemical reactions, and high-resolution surveillance imaging
    • …
    corecore