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ABSTRACT

Studies have been conducted to determine the influence of the tracking

radar-and data reduction technique on the accuracy of the meteorological

measurements made in the 30 to 100 kilometer altitude region by the ROBXN

passive falling sphere. A survey of accuracy requirements was made of

agencies interested in data from this region of the atmosphere. In light o.*'

these requirements, various types of radars were evaluated to determine

the tracking system most applicable to the ROBIN, and methods were

developed to compute the errors in winds and density that arise from noise

errors in the radar supplied data. The effects of launch conditions on the

measurements were also examined. Conclusions and recommendations have

been made concerning the optimum tracking and data reduction techniques

for the ROBIN falling sphere system.
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INTRODUCTION '

The passive falling sphere technique of acquiring winds, density,

•• pressure, and temperature-from the radar track of a falling sphere has the,,

potential of being a reliable, low-cost system for measuring these meteor-

ological parameters to altitudes of 100 kilometers. There are, however, -

operational and theoretical problems which remain to be solved before the

system becomes an accurate and reliable operational tool for all users.

One area of concern, is that of the tracking radar. Most all passive sphere

flights today are being tracked with the FPS-16 radar. Satisfactory density

and wind measurements above 70 kilometers can only be achieved with a

high precision radar such as the FPS-16. The purpose of this study is to

determine the interrelationships that exist between radar tracking charac-

teristics and wind and density accuracy. Implied in this statement are

questions concerning what is the best type radar (slant range, Doppler,

accelerometer, gyros, etc.) for tracking passive spheres; is each type

economically feasible; will it satisfy the user's needs for wind and density

accuracy; under what laun-ch-conditions-(launch azimuth, elevation, and

wind direction) tracking is most desirable; and what filter or filters provide

the required accuracies. These are the questions that have been addressed

by UDRI in this study contract.

. Early in the study it became obvious that only two types of radar

were economically feasible - the standard slant range, elevation angle and

azimuth angle radar and the Doppler, slant range, elevation angle, azimuth

1



angle radar. For convenience of notation, throughout this report the first

type radar is referred to as a slant range radar, and the second type as a

Doppler or range-rate radar. The accuracy requirements of a slant range

radar to provide accurate wind and density measurements to 100 kilometers

'are of the order of those achieved with the present FPS-16 radar. Thus,

the study essentially concentrated on the FPS-16 slant range radar and a

range-rate radar that would provide commensurate accuracy.



SURVEY OF USER REQUIREMENTS

The University of Dayton Research Institute, in inaugurating the

radar filter error study program, undertook a survey of user requirements

for wind, density, temperature, and pressure accuracy between 30 and 100

kilometers. It was felt that the study of radar error and filters should be

geared toward achieving the accuracies required by those who use the system.

By knowing present and future accuracy requirements, combinations of

radar accuracies and filters could be determined that satisfy these require-

ments.

The survey taken by the University consisted of contacting various

t • '

Governmental agencies where it was believed that requirements would exist

for meteorological parameters at altitudes to 100 kilometers. The agencies

contacted were NASA, AFCRL, the U.S. Army, and ESSA. A letter was

sent to representatives of each agency. The letter requested the requirements

of the agency regarding the steady state errors, bias errors , and wavelength

structure of the four meteorological parameters wind, density, pressure,

and temperature in the altitude range from 30 kilometers to 100 kilometers.

Response to the survey was discouraging. Not all agencies responded,

and those which did failed to reveal any specific accuracy requirements if

such requirements do exist. Consensus of the responders was that there

are few programs that demand specific accuracies in meteorological parameters,

particularly above 60 kilometers. Application of meteorological parameters



to specific programs such as Apollo, Space Shuttle, etc. , is generally

limited to altitudes below 60 kilometers and is presently being collected

with the required accuracies by operational systems. The need for accurate

data above 60 kilometers is most important to the research man studying

the structure of the atmosphere.

The researcher desires his data as accurate as possible, but seldom

can justify making a statement concerning how accurate his data need be

to be useful. In the future, however, the need for accurate meteorological

data to prove, disclaim, or hypothesize atmospheric structure theories will

increase and may be used to justify accuracy requirement statements of

an agency.

An alternate source of agency requirement information is contained

in the document "Federal Plan for Upper Air Observation Above 30 Kilo-

meters" (Ref. I). The document quotes accuracy requirements of meteor-

ological parameters for the AEC, DOC, DOD, and NASA. A common Fed-

eral accuracy requirement is also specified which consists of a meshing of

the various agency requirements. The requirements stated in this document

give a quantitative statement about errror magnitude with no corresponding

statement concerning wave structure requirements. Furthermore, justifi-

cation for the stated accuracy requirements is not satisfactorily explained

in the document. Nevertheless, since this is the only source of quantitative

accuracy requirements available to UDRI, the common Federal Data

Requirement Table as extracted from that document (Table 1) has been used

as a general guideline for th'e radar-filter error study.
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TABLE 1. COMMON FEDERAL, DATA REQUIREMENTS

Parameter Accuracy Firing Frequency
(30 - 100 km)

1. Density (5%)* 237-580/yr

2. Wind (5mps, 10° direction) 237-580/yr

3. Temperature (3°C. ) 237-580/yr

4. Pressure (5%)* 237-580/yr

#Tolerances stated are within an estimated 2 sigma.



-.EVALUATION OF TYPES OF RADAR

To determine the meteorological paraineters of wind, density, temp-

erature, and pressure, it is critical to be able to accurately measure the

acceleration and velocity of the sphere. The position of the sphere is im-

portant only insofar as assigning an altitude to the point where the meteor-

-ological-measurements-are made. It is velocity, and of even more impor-

tance, acceleration, that requires precise accuracy - particularly above

70 kilometers. The natural question is: what type radar will best measure

velocity and accleration. With a standard spherical coordinate (range,

elevation, azimuth) radar, velocities and accelerations are obtained by

numerical differentiation of the spherical coordinates. It is worth investi-

gating whether other types of radars that directly measure velocity and

acceleration could provide more accurate meteorological data, and if so,

at what relative expense can these radars be obtained. Mr. Aaron Soltes

of Raytheon was asked by UDRI to act as a radar consultant in order to

provide an answer to this question. A questionnaire which requested a cost

ranking of different type radar measurements of several specified accuracies

was submitted to Mr. Soltes. The accuracies specified were to be main-

tained under geometric conditions typical of an 80 launch, 125-kilometer

apogee ROBIN trajectory. The type radar measurements considered were:

a) Range measurement

b) Range-rate by Doppler

c) Azimuth and elevation angles



d) A and E by gyros and otherwise

e) A and E by accelerometers and otherwise

The accuracies specified by UDRI were those that were estimated

to provide density and wind errors of the magnitude outlined in the Federal

Accuracy Requirements (Table 1). Table 2 shows the cost ratings and time.

/

constants produced by Soltes. The time constant, as described by Soltes,

". . . is the observation time over which individual measurements are averaged. "

The cost rating column is based on a 1-10 scale with "1" representing the

cheapest radar components. An FPS-16 radar would rate about in the middle

at "5". Some entries in Table 2 are subject to constraints and proper inter-

pretation which Soltes points out in comments about each type component.

Slant Range. --Soltes comments that the sharp rise in cost rating in

going from five-meter to one-meter accuracy is because of'a variety of

residual errors that are close to their irreducible ultimate limits.

Range-Rate.--Soltes comments that the accuracy and longest allowable

time constant for Doppler frequency measurements are dependent upon the

R. F. wavelength used by the radar. The requirements of direct, simul-

taneous, unambiguous measurements of slant range and Doppler may or

may not be compatible, depending upon the maximum magnitudes of R and

R that must be measured and upon the R. F. wavelength.

Azimuth and elevation (A and E). -- "The cost and time constant

ratings shown are for electro-mechanically steered antennas. The 0.1-

milliradian accuracy requirement is achieved with 'Cadillac-quality1



TABLE 2
Matrix of Cost Ratings and Time Constants

Type
Measurement

2. Slant Range

3. Range Rate
(Doppler)

4. Azimuth (A)
and

Elevation (E)

* •

5. A and E
(Gyros)

or
otherwise

6. A and E
(accelero-

meters)
or

otherwise

vs
Type of Measurement

Accuracy Cost Rating
RMS (1-10)

1 meter 10
5 meter 3

15 -meter 1

1/3 met/sec 4
1 met/sec 3
5 met/sec 2

. 1 mils 5

. 5 mils 3
1. 0 mils 2

Servo Gyro •
.005 mils/sec 10 10
. 01 mils/sec 10 10
. 1 mils/sec 5 10
. 5 mils/sec 2

1. 0 mils/sec 1

. 001 mils/sec2 • ?

. 01 mils /sec2 ?

. 1 mils/sec ?

. 5 mils/sec2 1 0
1. 0 mils/sec 5

Time
Constant
(seconds)

0.1 .
0.1
0.1

0.1
0.1
0.1

0.1
0.1
0.1

Servo Gyro
10 1
4 0.1

0. 3 0, 1
0.1
0.1

?

?
?
?
?
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mechanical components and is close to the best that has been claimed to

date (0. 05-milliradians). To maintain 0. 1-milliradian rated accuracy in

the field requires meticulous attention to and corrections for a variety of

error sources including solar heating, dynamic deflections, target dynamics,

etc. , and frequent calibration and boresighting. "

• • • •
A and E. --A and E can be measured by several methods. The two

for which cost ratings and time constants are given are for the angle velocity

data derived from angle tracking servo and rate gyros. These types appear

most practical for the falling sphere technique. The angle tracking servo

method may be the simplest, but it requires sufficiently fine-grain angle

position data. The rate gyros yield a direct analog output that is more

accurate, but very complex "care and feeding" of the gyros is required.

.. • •
A and E. --Soltes comments: the inability of an electromechanically

steered antenna to move smoothly while it follows a target creates even

more noise in the second derivative of its motion than in the first derivative

that is not related to true target motion. Consequently, unless a large

time constant can be tolerated, it is self-defeating to attempt to measure

A and E directly to the higher accuracies cited in Table 2.

In order to apply the results of Table 2 to a projected radar design,

Soltes was asked whether there are any constraints inherent in designing

a radar that consists of a combination of the different type measurement

components. For example, is it feasible to design a radar with gyros to

• • •

measure A and E, and a Doppler to measure R. Soltes1 reply is summarized



as follows: the constraints on angular and radial measurements are generally

either independent or compatible. Constraints on slant range and Doppler

measurements may or may not be directly compatible. If they are not

directly compatible, they can be made compatible at some additional expense.

A final question asked of Soltes was "What improvement in the time

constant or accuracy can be achieved by a) having a real-time knowledge

of an average trajectory of the sphere and b) or programming the radar to

anticipate the trajectory of the sphere?" Soltes' answer to part (a) is that

an average trajectory is of no value because individual trajectories probably

differ too greatly from each other. Soltes answered part (b) as follows:

"predicting the motion of a particular sphere in real time from its own

past history is definitely useful and the name of the radar tracking game.

How much real time computing can be accomplished within the allotted time

constant may well determine how accurately the target tracking mechanism

can estimate the true target motion from the noise-corrupted radar measure-

ments. "

The UDRI has used the answers and other information supplied by

Soltes in an effort to determine what is the best and most economical type

of radar to be used for tracking the ROBIN sphere. The next section dis-

cusses the evaluation of each type radar and the conclusions reached by

UDRI.

10



Comparative Evaluation of Radar Types

The best tracking radar consists of the combination of type components

that have the lowest cost rating and will produce the desired accuracy and

wave structure in density and winds. The FPS-16 radar is the radar gen-

erally used for tracking passive spheres. It is available at all ranges and

therefore can be used as a guide to determine if a proposed radar, or radar

component, would improve upon accuracy, or be less costly than that pres-

ently attained with the FPS-16 radar.

The first analysis of Table 2 consisted of determining whether slant

range or Doppler radars had a better cost rating in providing a specified

accuracy in R, and under what conditions each was better. A specifed

accuracy consists of an RMS e.rror and a frequency response. Thus, in

order for the R obtained from differentiating the slant range measurement

to have the same accuracy as the R from the Doppler, two things are

necessary:

1) they must have the same RMS error in R, and

2) they must have the same frequency response, i. e. , the wave

structure retained in each R measurement is identical.

Consequently, the technique used to compare the slant range and Doppler

components is the following:

Given a. slant range radar of RMS accuracy <j-. m/sec, cost rating
X.

of C, and time constant of At seconds,

11



a) Define a method of obtaining R from the slant range measure-
ment.

b) Determine the RMS error and frequency response of the R de-
terinined from (a).

c) Deiine an averaging method to get a smoothed value of R from
the Doppler measured R.

d) Find the RMS accuracy of the Doppler radar that will provide,
in the smoothed R, the same RMS error and frequency response
as that from the slant range radar (step b).

e) From Table 2, determine the cost rating of the Doppler radar
with RMS accuracy specified in step d.

f) Compare cost rating of slant range radar to cost rating of
Doppler radar from step e. Since both radars produce the
same error and frequency response in R, the one with the
smaller cost rating is the most desirable.

The method of obtaining R from the slant range (step a) will be

defined as fitting a linear polynomial to N slant range data points and taking

the slope as the range velocity at the midpoint of the data. The velocity

so defined will be denoted by R . For this differentiating technique, the
sr

RMS error in R and frequency response, step b, are given respectively
sr

as:

r 12 2 ~ | 1 / 2

°R " L N ( N 2 - l ) A t 2 aR J
sr

where

At is the time spacing between data points

N is the number of points used in the linear fit

12



cr is the RMS error in slant range - assumed to be normally dis-
R

tributed with mean zero,

and the frequency response as

'O

g'(m.N) = [T T /N .1)A t U J]3 {sin L r [ (N- l )Atu j ] -TT(N- l )AtU) cos[TT(N-l)Atu)] \ (,l)

where

UU is the f requency in cycles per second.

The derivation of Equations (1) and (2) can be found in References 2 and3,

respectively.

The method of obtaining a smoothed R from the Doppler R (step c) is

defined as moving averages. That is, Q values of Doppler R are averaged

and the averaged value of R is defined as the smoothed R at the midpoint of

• • •

the data. The Doppler R is denoted as R and the smoothed Doppler R as

. * . #
R . The RMS error of R (step d) is given as:

"A

where

Q is the number of Doppler values of R averaged, and

*or • is the RMS error in the Doppler R - assumed to be normally
RD

distributed with mean zero.

. *
The frequency response of R is given as

13



fi n\ 1 f s iMQTTAtw ) \
£ ( C O 'Q ) = -Q 1 s i n ( T T A t ^ ) I ' - . (4)

The derivation o: Equation (4) is given in Appendix A. A plot of the two f re -

quency response functions for various values of N and Q, Equations (2) and

(4), is shown as Figure 1.

The application of steps (a) through (f) is illustrated by the following

example. Consider a slant range radar from Table 2 with RMS accuracy of

five meters, cost rating of three, and time constant of 0. 1 second. Deter r-

mine if an equivalent Doppler radar has a higher or lower cost rating.
i

The RMS error in the R from differentiating the slant range is ob-

tained from Equation (1) as:

30.000 1 / 2

sr

I

J

The Doppler radar that produces an error in the smoothed Doppler

. • ̂  • •
R, R , equivalent to the error in the differentiated R, R , is determined

j—' s r

by equating Equation (5) to Equation (3). That is,

r 30,000 Q I 1 - / 2

°RD
 = L N(N 2 -1 ) J . ' (6)

Equation (6) determines the Doppler RMS accuracy required to make

(r ' = o- • # for specified values of N and Q.
R R „

sr D

14
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Since it is also required that the frequency response of R be the
sr

• *:

same as the frequency response of R , a constraint will be placed on the

relationship that must exist between N and Q .

The two response functions g(c j ,N) and f (co ,Q ) are shown in Figure 1

for various values of N and Q . It is obvious that the two response functions

will not be identical over all frequencies, particularly over the higher

frequencies. However, when Q = 3/4N, it is remarkable how well the two

functions agree over the lower frequencies of interest. The response of

the two functions differs by less than 2%. When the frequencies are higher,

say greater than 0 .2 , the difference between the two functions is sometimes

larger, but this is of little importance since these wavelengths are essentially

destroyed by the filters.

A substitution of Q = 3/4N into Equation (6) determines the Doppler

RMS accuracy required to make both the RMS. errors and frequency response

functions equal. That is, cr- = 0 - ' * and g(co ,N) = f(co, Q) for GO < 0.2.
R R _

sr D

This substitution yields:

150

«r- = (7)
RD [N2.!]1/2

Equation (7) shows that the Doppler radar equivalent (same RMS and

same frequency response) to the specified slant range radar depends upon
•

the number of points, N, used to determine R . The choice of N strongly.
s r

influences the density and wind accuracy that can be achieved. If N is

16



chosen too small, for example, a large noise error in density and winds will

result which is not indicative of the maximum accuracy in wind and density

that could be achieved by choosing the best N. On the other hand, if N is chosen

too large, excessive smoothing will result that destroys real oscillations in the

data that could otherwise be observed. By considering the present FPS-16 system

as a standard, the optimum density accuracy is achieved when N = 91 points.

'T*his "corresponds to-the linear-smoothing interval presently used in the High

Altitude ROBIN Program.* Substituting N = 91 into Equation (7) gives

(r^ = 1 . 6 5 m/sec
RD

From. Table 2, the cost rating of the Doppler radar with RMS accuracy

of 1. 65 m/sec is approximately 2. 9. To summarize, the following has been

accomplished: it has been determined that a Doppler radar with RMS accuracy

of 1. 65 m/sec is equivalent to a slant range radar with RMS accuracy of five

meters and time constant of 0. 1 second for N = 91. The cost rating of the

Doppler is 2. 9 and the slant range radar is 3. 0. Consequently, in this case

there is a negligible cost advantage of one radar over the other.

The analysis presented in the above example was performed for the

slant range radars of the other accuracies specified in Table 2. Table 3

shows the results of this analysis using N = 91 in each case. It should be

recalled that an N = 91 represents the smoothing interval used in the

#The High Altitude ROBIN Program smooths on 19 one-half second
spaced data points. This corresponds to 91 point smoothing of 0. 1 second
data points.
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High Altitude ROBIN Program and as such provides the same frequency re-

sponse as is presently being operationally achieved. The noise error in R

resulting from using N = 91 will only be the same as that achieved with the High

Altitude Program if the RMS error and time ccnstant of the slant range radar

is the same as that of the FPS-16. The noise error in R for N = 91 and each

accuracy is also given in Table 3.

-TABLE -3. FREQUENCY RESPONSE--N FIXED

Time Constant
Both Radars Slant Range Radar

At
seconds

. 1

. 1

. 1

meters

1

5

15

N

91

91

91

Cost
Rating

10

3

1

Error in
Smoothed
Velocity

*R ^R*
,sr , D

m/ second

.04

. 20

. 60

Equivalent Doppler Radar

Q

68

68

68

°R
m/sec

. 33

1.65

4. 95

Cost

Rating

4

2.9

2

The results of Table 3 are graphically presented in Figure 2. This

figure shows the relative cost ratings of equivalent slant range and Doppler

radars. Any point on the curve represents equivalent radars when compared

at the frequency response of the ROBIN system. As the curve proceeds to the

right, the equivalent radars will provide less noise error in the derived R.

The noise error at which the Doppler radar becomes more economical (crosses

the line of equal cost ratings) than the slant range radar is approximately

cr • = 0 . 2 0 m/sec. Increasing the accuracy in R is relatively insensitive to
R

cost when measured by a range-rate radar, but highly sensitive to cost if

measured by a slant range radar. For example, improving the error in R

18
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from a • = • 2 m/sec to cr • = . 04 m/sec increases the cost rating for a slant
R R

range radar from three to ten, but only increases the cost rating for a Doppler

radar from three to four. When using the FPS-16 radar and the High Altitude

ROBIN Program, the error in R is approximately <r- = 0.42 m/sec. Conse-
R

quently, from Figure 2, it is seen that to improve upon the accuracy of the

present FPS-16 radar, it is more economical to enhance the accuracy of a

Doppler rather than that of a slant range radar.

The results of Table 3 and Figure 2 were for a fixed smoothing interval

(N = 91) and consequently will all provide the same frequency response in

density - that of the High Altitude ROBIN Program. The slant range and

Doppler radars can also be compared for a fixed value of the noise error in

R. This fixed value can be chosen as that presently obtained with the FPS-16

radar and the High Altitude ROBIN Program: cr • = 0.42 meter per second.
R

In this case, the rationale for choosing N is: determine that N which will

produce cr • = 0 . 4 ? . meter per second. This is easily calculated from Equation
R

(1). Table 4 compares slant range and Doppler radars that provide the noise

error presently attained in the High Altitude Program. Figure 3 presents the

results of Table 4. For the present ROBIN system the slant range radar has a

cost rating of 2. 1 and the Doppler radar a rating of 2. 7. However, if improved

frequency response is needed, Figure 3 shows it is much more economically

achieved by a more accurate Doppler radar.
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TABLE 4

o-• = .42 m/sec (High Altitude ROBIN Program)
R

Time Constant
Both Radars Slant Range Radar Equivalent Doppler Radar

At
-seconds

. 1

. 1

.1

Comparative

.meters

1

5

15

evaluation

N

19

55

114

when

Co.s':
Rating

10

3

1

time constant

Q

14

41

86

equals

m/sec

1.6

2. 7

3.9

one -half second

Cost
Rating

2.9

2. 8

2. 5

Since the time constant of 0. 1 second is less than that generally achieved

by an FPS-16 radar, and furthermore, since actual computation with 0. 1

second data is often overwhelming in volume, it is instructive to look at

0. 5 second time constant. Cost ratings for this type radar were not avail-

able; so we assumed 0. 5 second time constant was obtained by averaging five

0. 1 second data points. This would in effect decrease the RMS measure-

ment error by a factor of 1 /V?T. The comparison was then made between

range and range rate radars-using the resultant accuracies. Table 5 gives

the results which are identical to those of Table 4. This should not be

surprising. Averaging of five data points from both a range radar and its

equivalent range-rate radar should again provide equivalent accuracies.

We conclude from Table 5 only that you can not get something for nothing.
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TABLE 5

cr- =• . 42 m/sec (High Altitude ROBIN Program)
R

Time Constant
Both Radars

At

seconds

..0..5

0. 5

0. 5

Slant Range Radar

o-

meters

i/Vs
5/V5

15/V5

N

4

11

23

Cost
Rating

10

3

1

Equivalent Doppler Radar

Q

3

8

17

o-
J

m/

1

2

3

T

sec

.6

. 7

. 9

Cost
Rating

2.9

2.8

2. 5

Comparison of Angular (A and E Radars to
Angular Rate (A and E) Radars

The steps (a) through ( f ) , outlined for comparative evaluation of

slant range and Doppler radars, are directly applicable to the evaluation

of angular and angular rate radars. Angular and angular rate radars were

compared 'at the N value that produced the frequency response of the High

Altitude ROBIN Program and also at the various N values that provided

the same noise error in A and E presently achieved with the FPS-16 radar

and High Altitude Program, (i. e. , or • = <r • = • 0084 mils/sec. ) Tables
E A

6 and 7 show the results which are graphically presented in Figures 4 and 5.

Figure 4 shows the comparison at N = 91 which provides the frequency

response of the High Altitude Program. Over the entire range of cost

ratings the angular measuring radar has a lower (cheaper) cost rating than

its equivalent angular rate radar. The difference in cost ratings is con-
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TABLE 6
Frequency Response N Fixed

Time Constant
Both Radars

At

seconds

. 1

. 1

. 1

• 1

Angular Radar

. o- N Costy\
Rating

mils

.1 91 5

.5 91 3

1.0 91 2

2,0 91 1

Error in
Smoothed
Angular
Velocity

"A =^1
.,sr D

mils/ sec

. 0040

. 020

. 040

. 080

TABLE 7

cr • = . 0084 mils/sec
A

(High Alti tude ROBIN Program)

Time Constant Angular
Both Radars Radar

At

seconds

. 1

. 1

. 1

. 1

cr N
A

mils

.1 55

.5 162

1.0 257

2. 0 409

Cost
Rating

5

3

2

1

Equivalent
Angular Rate

Radar

Q cr. Cost
D Rating

68 . 033

68 . 165

68 . 330

68 .660

Equivalent
Angular Rate

Radar

Q crA

mils/sec

41 v . 054

122 .092

193 .116

307 . 147

10 gyro

5 servo

4 servo

1 . 8 servo

Cost
Rating

8 servo

7 servo

5 servo

4 servo
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siderable - a factor of approximately two. To achieve the accuracy attained

in the High Altitude Program with an angular rate radar would require a

cost rating of nearly nine as compared to an angular radar cost rating of

less than five. The same results are seen in Figure 5 when the comparisons

are based on the same noise error as the ROBIN system. No situation

exists when the angular rate radar is superior to the angular radar. Con-

sequently, the UDRI has discarded angular rate radars from further consid-

eration.

Comparative Evaluation of Angular and Angular Acceleration Radars

A simple comparison can be made to show the impracticality of

angular acceleration radars. For the ROBIN system the noise error in

the angular acceleration is approximately

<rv = . 0015 mil/sec2

A

The noise error obtained in acceleration measurements by taking the

second derivative of a quadratic fit is

. [_«2 yiA ,Ref. 2) (8)

N5-5N3+4N At2

The right hand side of equation (8) will be equal to . 0015 mils/sec when

At = 0. 1, cr = . 2 and N = 171. The cost rating of such an angular radar
A.

with time constant of 0. 1 seconds and an RMS accuracy of . 2 mils is

approximately four. Next one can determine the number of points that

must be averaged from an acceleration radar with a cost rating of five

27



(this rating is given in Table 2) to give the same noise error in acceleration.

A cost rating of five corresponds to an RMS acceleration error of 1. 0 mils/sec2 .

Averaging Q acceleration points reduces the standard deviation of the

averaged acceleration by^/Q (see Equation 3). That is,

* o-. .
<r v = _A

VQ (9)

*A>

Solving Equation (9) for the Q that makes c r - - '' equal to .0015 mils/sec2

J\

gives

Q = 9628 points

- obviously a few more than one would care to use. As a result of this

investigation, angular acceleration measuring radars have been removed

from any fur ther consideration.

Summary

The previous discussions have led to the following results:

a) Doppler radars hold considerable promise of improving accuracy

at little cost. Further evaluation of this type radar is warranted.

b) Angular rate radars are considerably more expensive than equivalent

angular radars. As a result we have rejected angular rate radars from

further consideration.

c) Angular acceleration radars are considerably more expensive than

angular radars and can not provide the required accuracy. As a result, we

have rejected angular acceleration radars from further consideration.
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. ERROR ANALYSIS

Error in the determination of winds and density from the ROBIN

falling sphere may arise from many sources. The effects of an erroneous

drag table, vertical winds, radar noise, smoothing technique, etc. , all

must be taken into account in estimating the accuracy of the measurements

.taken. In this chapter we will examine the combined effects of inaccuracy

in the radar-generated coordinates (radar noise) and error introduced by

the smoothing technique. Two types of radars will be considered: the devices

that measure an object's position only and those which measure both position

and velocity along the range direction. For brevity, we will call the former

"slant range radars" and the latter "range-rate radars". The basic smoothing

technique applied to the raw data from both radars is assumed to be smoothing

by orthogonal polynomial fit t ing. A description of this method has been given

by Luers (Ref . 1) so that it will be sufficient to say that orthogonal polynomial

smoothing has proven to be a most desirable technique for smoothing ROBIN

radar data. The majority of the discussion in this chapter will be given to

the determination of noise error in the measurements of density and wind

speed. Noise error originates in the noisy, unfiltered radar data and is

always carried, to some extent, through the smoothing technique to the

computation of the final parameters. Bias error, which is a property of

the fitting polynomial(s), will also be examined in cases where methods

have been devised for its measurement. Noise error and bias error may

29



be combined as total error in order to evaluate the overall accuracy of a

particular smoothing technique.

Spherical and Rectangular Coordinates

The raw radar data of a balloon track consists of the spherical

coordinates of the balloon's position: range, elevation angle, and azimuth

*angle, -and in- the-ease of -range -rate radars* velocity along the range direction!

At some point in the analysis of the radar date., a transformation must be

made from the spherical coordinate system to a rectangular coordinate

system in order that winds may be represented in a North-East reference

frame and density associated with a particular altitude. The question has

arisen as to where in the smoothing process is the best point to make this

transformation. If the transformation is made on the spherical position data

before any smoothing is done (assuming we ha.ve a slant range radar) the

transformation equations are simple and require only the present set of the

three spherical position variables. The transformation is, however, non-

linear so that smoothing" on the resultant rectangular coordinates could intro-

duce some error due to "misfit" of the smoothing polynomials to the data.

This misfit may or may not occur to as great a degree if smoothing were

done in the spherical system. Smoothing the spherical data to obtain first

velocities and then accelerations followed thereafter by transforming to accel-

erations in a rectangular system presents problems also. The transformation

equations for spherical to rectangular acceleration are very complicated and

require knowledge of previous velocities and positions (due to the non-zero
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length of the smoothing interval). Identifying and saving all the necessary

information to make a proper transformation of accelerations presents a non-

trivial bookkeeping problem. In order to determine which method (smoothing

before transforming or transforming before smoothing) should be recommended,

a comparison of the noise and bias error in the rectangular accelerations

computed by each method was made. The comparison was made between

acceleration measurements rather than velocity because above 60 kilometers

density and winds are primarily determined by acceleration measurements.

Noise error. -- Figure 6 shows the rectangular and spherical coordinate

systems used in this comparison and throughout the error analysis. The

rectangular system is left-handed with the x-axis positive north and y-axis

positive east. The z-axis is positive upward. Range, R, is measured along

a line connecting the balloon with the radar site at the origin. (It is also

assumed that the rocket is launched from the origin.) Elevation, E, is

measured positive counter-clockwise from the x-y plane, and azimuth is

measured positive clockwise in the x-y plane from the x-axis. Although

corrections for the curvature of the earth are make in the ROBIN program

(Ref. 2), a flat-earth approximation is sufficient for noise and bias error

analysis.

From Figure 6 it can be seen that the relationship between the spherical

coordinates and rectangular coordinates is:

x = R c o s E c o s A

y = R cos E sin A (10)

z = R sin E
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z(altitude)

V
(East)

-e- x (North)

Figure 6: The Rectangular and Spherical Coordinate Systems
Used in the ROBIN System.
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Equations (10) are applied to the raw radar data to convert each point from

R, E, A, to x, y, z representation when smoothing is done on rectangular

coordinates. To find the noise error in the rectangular coordinates given

the noise error in the spherical coordinates the differential error approxi-

mation may be used. Assuming noise errors in range, elevation, and azimuth

of 5R, 6E, and $A, and ignoring second order terms, errors in x, y, and

z are given by:

6x = (cos E cos A)6R - (R sin E cos A)sE - (cos E sin A)sA

5y = (cos E sin A)§R - (R sin E sin A)sE -t- (cos E cos A) §A

6z = (sin E)sR + (R cos

or, in a more compact notation,

&R

&y

6z

where the matrix

[M] =

6E

6AJ

cos E cos A - R sin E cos A - R cos E sin A

cos E sin A - R sin E sin A R cos E cos A

(11)

sin E R cos E

The error variance , <r 2 . , may be written as

c r 2 .

where [6i] denotes the expected value of an error in i. If the noise is truly

random in nature, then the expected value of 5i should be zero, or
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cr.2 = E [ (6 i ) 2 ]
i

In light of the above, the error variance in x, y, and z may be determined

by squaring both sides of Equations (11), which yields:

6x2

6y2

6z'

cos2 E cos2 A R2 sin2 E cos2 A R2 cos2 E sin2 A*

cos2 E sin2 A R2 sin2 E sin2 A R2 cos2 E cos2 A

sin2 .E R2 cos2 E

'6R2'

6E2

6A2

+ [S] (12)

where [S] represents the matrix of all the cross terms containing the factors

&R &E, 6R 6A, and &E &A. Measurements of R, E, and A are assumed to be

mutually independent so that E(6R 6E), E(6R 6A), and E(&E &A) = 0. Taking

the expected value of both sides of the above expression and replacing

E [ & X ] with a 2 and so forth gives: :

2\

= CM2]

'R

E
(13)

where

cos2 E cos2 A R2 sin2 E cos2 A R2 cos2 E sin2 A

cos2 E sin2 A R2 sin2 E sin2 A R2 cos2 E cos2 A

sin2 E R2 cos2 E 0

The quantities <r 2 , cr 2 , and cr 2 are the noise error variances of the radar
H E A

measured coordinates and are functions of the radar.

Equations (13) give the noise error variance in the rectangular

position coordinates after the transformation from the radar's spherical
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system. It will be shown in a later section that smoothing the rectangular

coordinates to obtain rectangular accelerations results in multiplication

of the position error variances by a constant dependent only upon the

smoothing polyncmial(s). Thus, the error variances in acceleration are

given by

(14)

/ 2<r. .
x

cr..2

y,

W..2
» z /

= Kj [M2]

2

R

0- 2
E

TA
2j

where KI is a constant, when smoothing is done on rectangular coordinates.

To find the noise error variance in x , y, and z when the spherical

coordinates are smoothed, expressions must first be found for rectangular

accelerations in terms of the corresponding spherical quantities. Differen-

tiating Equations (10) twice yields:

x = (R - RE2 RA2 ) cos E cos A - (RE + 2RE ) sin E cos A

- (RA + 2RA) cosEs inA + 2REA sin E sin A

'y = (R -RE2 - R A 2 ) c o s E s i n A - (RE~ + 2RE J s i n E s i n A

+ (RA + 2RA) cos E cos A - 2REA sin E cos A

z = (R - R E 2 ) s i n E + (RE + 2RE )cosE

where R, E, A and R, E, A are the accelerations and velocities, respectively,

in the spherical system. Application of the same techniques that produced

the error variances in Equations (13) gives expressions for the variances

when smoothing on spherical coordinates:
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2cr. .
X

cr..2

y
2cr. .

Z i

= CM2]

i 2«0~.L^
**•

c r - - 2

E

.. 2
°A ,

(16)

where

A

co>' E cat* A R1 iin1 E cot' A R* cot' E »ln* A

co. 'E .in1 A R' .U'B.U'A R'CO. 'ECO. 'A
• In* E R1 co> rE 0

(E • in Eco* A + Aco* E «in A)1 (RA • I n E f l n A - R E c O k E c o i A - R • in Ecoi A)' (REctn Ec tn A - R CO* E « inA -HAcocEcoc A)1

(Aeo .Ecol A - E » i n E > i n A ) ' ( R A c i n E c o t A - RE co. E .in A . R ilo E «in A)1 (Rco. Eco.A - RAco. E «io A - HE >in E col A)1

E'cos* C (Rco.E-REiinE)' 0

J-E*-A')co» Ecos A - E « i n E c o « A - A col E »in A t ZAE .in E lin A]' [-(R -RE'.RA*) <in E co» A-(RE t 2RE)coi E co« A +(RA+2&A) >ln E >in A»2RE/ cot E Bin A)'

S-E'-A')co«E.inA-E « l n E « i n A t Aco« Ecoi A-2AE ilnEcoo A3* C-(Bi-RE1 -RA1) sinE .in A-(RE1ZRE)coiE«in A-(RA tZRAJiUEcoi A-2REAcot Ecoi A]'

C-E* « InE*Eco«E] ' [(K-RE')co. E - (R+2RE «ii>E)]'

C - (R 'RE* -KA*) co> E «in A + (RE -r 2RE) cin E sin A - (RA + 2RA) cot E cos A + 2EEA «ii> E cos A]1

[(R-RE' -RA*)co>EcoiA.<R.E'+2RE}»laEco<A-(KA + 2AA)co»E .inA + ZREA.loE iioA]'

0

Note that the matrix [M2 ] is identical to the [M2 ] matrix of Equations (13)

and (14). The ncise error variances in the smoothed spherical velocities

and accelerations can be expressed as the product of a constant and the error

variances in the spherical position coordinates, in the same manner as the

rectangular acceleration in Equations (14):

1 2\
ff..

X

cr . .2

y
2cr..

z '

= K, k*2 ]

2\cr
R

0- 2
E

2

A *

+ K2 IN
2 ]

2\

[P21
E

(17)

where Kj and K2 are constants depending only on the degree and length of

the smoothing polynomial. The constant K! of (17) is identical to the Kj

of (14), provided of course that the same smoothing polynomials and smoothing

intervals are used in each method. The R, E, and A error variances in

(17) may be factored out and the matrices K2 [N
2 land [P2] combined as

matrix [Q2]. We can then write (17) as
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cr..
x

cr..
y E

' A /

(18)

At this point, if we reexamine (14), the expression for noise errors in

acceleration -when x, y, and z are smoothed, we see that the difference between

predicting the noise error in acceleration when smoothing on x, y, and z rather

than R, E, and A is the term

[Q2]

R

In order to determine the magnitude of the elements of [Q2] as compared to

the elements of KI [M ], a sample trajectory was analyzed by smoothing of

R, E, and A. Alone with printing out the values of <r.. , cr.. , and cr.. , the
x y z

factors

j [M2]

'R

E

A/

and [Q2]

'R

E

'A /

were output. From this data Table 8 was prepared showing the contribution

to the acceleration noise error by each of the above terms at ten kilometer

altitude intervals,from 60 to 100 kilometers. The smoothing of the sample

trajectory was done with the 19-21 linear-cubic double polynomial filter

normally used for density determination. Radar errors used were approximately
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TABLE 8: A COMPARISON OF TERMS IN THE EQUATIONS
FOR ACCELERATION ERROR

Altitude (Kilometers)

Contribution to

a., from
X

K! CM2]

IQ2]

Contribution to

cr. .2 from
y
rdEM2]

[Q2]

Contribution to

cr. . . from
z

KI [M2]

[Q2]

100

. 032618

. 000202

.

. 032775

. 000203

.

. 022408

. 000009

90

. 029245

. 000230

"

.029395

. 000232

. 023543

. 000017

80

.026315

. 000158

. 026431

. 000166

. 024461

. 000019

70

. 023832

. 000029

.

. 023909

. 000029

-

. 025183

. 000005

60

•-

. 022402

. 000017

. 022246

. 000015

. 026591

. 000006
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those characteristic of the AN/FPS-16 radar, a slant range radar often

used in tracking the ROBIN. The standard deviation of noise error in range,

<r , is conservatively taken as six meters and the standard deviations in
JR

elevation and azimuth, cr and cr , are assumed to be .15 mils (1 .473xlO~ 3

E A

radians) each.

Examination of Table 8 quickly shows that the contribution of all the

elements of the matrix [Q2] is for practical purposes negligible for all the

acceleration components throughout the altitude range considered. The

largest contribution from [Q2] occurs at about 90 kilometers where it may

be as much as 1% of K! [M2] for the horizontal accelerations and . 1% for the

vertical acceleration. At lower altitudes the relative effect of [Q2] is less

than .1% for (r..2 and or..2 and about .02% for cr . .2 . It is apparent that the
x y z

approximation made in ignoring the contribution to the noise error by the

terms represented in the matrix [Q2] is quite good. One can conclude then,

that there is virtually no difference in noise error variance between smoothing

on the spherical coordinates R, E, and A and smoothing on the rectangular

coordinates x, y, and z.

Bias error. --It has been shown above that on the basis of noise error

there is little difference in smoothing on R, E, and A and smoothing on x,

y, and z. Next we will consider the differences in bias error between the

methods. As mentioned previously, bias error results from lack of fit

of the smoothing polynomials to the actual data. A study was carried out

by smoothing a computer simulated trajectory in both manners, i. e. ,
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smoothing on R, E, and A, and smoothing on x, y, and z. The resulting

rectangular acceleration components were compared to the "true" values

computed by the trajectory program. The program supplied position

coordinates in R.EA form to a smoothing routine which used a 19-21 linear-

cubic polynomial for both processes. The bias error was then computed

by comparing the smoothed values of the acceleration components at a given

altitude to the true value at that altitude as computed by the trajectory

program. Bias error was computed as a "percent bias" by the equation:

. t rH „. ,. smoothed value - true value '„
"% Bias" = x 100

true value

Figure 7 presents plots of the percent bias in x', y, and'z as functions of

altitude. Broken lines show the bias for smoothing on R, E, and A, while

bias for x, y, and z smoothing is shown by solid lines. The figure shows

that while the bia.s error for both methods may be quite large in some cases,

the difference between the two methods is no more than a few percent at

most. This indicates that the difference between "lack of fit" to the data

by transforming x, y, and z before smoothing and after smoothing is small

and can be ignored.

Considering what small differences exist in noise and bias errors

between smoothing on spherical and smoothing on rectangular coordinates,

the better approach appears to be smoothing on x, y, and z. This method

requires less information for the coordinate transformation as shown by

comparing Equations (10) and (16), and so greatly simplifies any data analysis

scheme.
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Figure 7. Bias Error in Rectangular Acceleration (x , y, and z ) for
Spherical and Rectangular Smoothing.
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Development of Methods for the Calculation of the
Noise Error in Winds and Density

Methods for computing the noise errors in wind speed and density

have been developed for ROBIN systems using slant range radars and those

using range-rate radars. The calculations require values of the noise error

variances in the radar coordinates, parameters of the smoothing technique,

and a nominal trajectory. Although temperature and pressure may also be

measured by the ROBIN, their values are derived from the density measure-

ments, so that separate studies of noise error in T and P are not required.

The expressions developed should be sufficiently general as to be applicable

to virtually all radars and smoothing techniques presently used in ROBIN

experiments. We will first present the error analysis for slant range radar

systems and then examine the alterations necessary to apply the analysis

to range-rate systems. The presentation of the slant range radar systems

is similar to that given in Reference 2. However, the following presentation

takes into account the correlated errors in velocity - a point not considered

in Reference 2.

Slant range radars. --Noise in the radar measurements of range,

elevation, and azimuth is assumed to be a random, Gaussian process so

that the mean (or expected value) of an error is zero. The size of the dis-

tribution of errors can then be described by specifying an error variance,

<r2 ( or a standard deviation er), where cr2 is defined as the mean square error

as shown in Equation (13). Let r. represent a radar measurement of range,
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elevation, or azimuth at the ith point in time of the trajectory. We assume

that the radar provides a series of such points ( i = 1, 2, 3, . . . ) spaced

in time be an interval At. We also assume that the error in each measurement

of r. is independent of those errors preceding and following. The measurement

of r. may include some error so that we may express r. as

r. = r.* f §r. (19)

where r. is the true value of r. and fir. is the error. Transforming from
i 1 1 °

the radar 's spherical coordinate system to a rectangular coordinate system

transforms the errors in the coordinates by the relationship defined by

Equation (13),

o- .2 = cos2 E cos2A o- .2 + R 2 s in 2 E cos2A cr 2 + R. 2 cos 2 E sin2A.<r .2

x i 1 1 R i i i i J ^ i i i i A i

a- 2 - cos2E.sin2A cr 2 + R 2 s in 2 E sin2A.cr 2 + R . 2 cos 2 E cos2A cr A .2

yi 11 Ri i i i li.i i i i Ai

cr .2 = sin2E cr 2 + R 2 cos 2 E <r 2 . (13)
zi • i Ri i i Ei

The error variance in x, y, z position determined by Equation (13) can be

used to express velocity and acceleration errors in rectangular x, y, z

coordinates as follows:

Let

x. = x.1 + 6x. (20)
i i i

where 6x. is the error in the measured value x. and x. is the true value
i 1 1

of x at the i point. In smoothing x to obtain velocity, N values (points

in the time series) of x are fitted by the least squares criterion with an
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orthogonal polynomial of degree k. The derivative of this polynomial is

taken and its value at the midpoint of the interval is taken as the x velocity.

As N is always chosen to be odd, the midpoint of the interval is the point

N + 1 . •
— - — . The velocity x at that point is then (Luers, Ref. 1)

-. -

where ' M

N

=

P (i) is the k order Legendre polynomial in i,
ic

P. ' ( i) is the first derivative of P, (i),
k k

At is the time spacing between points,

and N is the number of points in the smoothing interval.

Substitution of x +6x. for x in ( Z l ) and a rearrangement of terms
i l l

yields:

p
± ,

X - N - +"-+ - N
1 = 1 At Pj2(i) At Pk

2 (i)

Assuming, as we did for x, that x may be written as the sum of a true

value and an error, x = x +6x, we may substitute this expression in (22).

If we then assume that the polynomial is an exact representation of the
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noiseless data, the noise error in velocity in terms of the noise error in

position is

N

v ; i= L \~
1=1 Pj2 (t) At Pk

2 (i)

To compute the noise error variance in velocity, we square both sides of

(23) and take the expected value. Great simplification can be achieved by

noting that I\T

1) Y P.(i) P. (i) =-0 for j 4 k
L> j k . . .

, ' = 0 for even k
k • \ 2 /

and 3) E(6x. 6x ) = for j / k
J k

The velocity noise error variance is then

{24)(24)

Since fifth order polynomials are rarely, if ever, used, normally only

the first two terms require evaluation. These terms may be expressed as

functions of N (Ref. 2 ) as
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N ~ N ( N 2 - 1 ) (25a)

(i)

and

rp.ffiiyr , ,
IM 2 ;J _ 7(3N'-7,' . (25b)

N (N2 -9)(N2 -4)(N2 -

Thus, for linear smoothing on x, y, or z to obtain velocity, Equations (24)

and (25a) may be combined to give an estimate of the noise error in velocity

in terms of the uncertainty in position. When cubic fitting is used, the

expression of (25b) must be added.

The next step in the process of obtaining wind and density measurements

is the computing of accelerations. There are two approaches: 1) taking

the second derivative of the polynomial fitted to the position points, or 2)

fitting a new polynomial to the velocity points and taking the first derivative

of this polynomial. Both methods present desirable features. Using one

fitting polynomial and taking second derivatives for acceleration is a simple

and relatively fast process. (Obviously the order of the polynomial must

be greater than one if non-zero accelerations are to be obtained. ) "Double

smoothing", in contrast to "single smoothing" described above, entails'

fitting a new polynomial to the velocity points provided by the differentiation

of the first function. The advantage to double smoothing lies in minimizing
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the lack of fit (bias error) between the data and the smoothing polynomials.

Bias error has been discussed in detail in Reference 2 where it is noted

that the basic justification for double smoothing is that two odd order smoothing

polynomials can usually be chosen so that the bias error is less than the bias

resulting from taking the second derivative of an even order polynomial.

Double smoothing, however, presents some complications in the computation

of noise error, as we shall see below.

For single smoothing an error in acceleration arising from an error

in position may be written as

f , + ^ (26)X = L I - R - +-" + -- N - }6xi (26)

1- 1 . .?. \ ^ 7, .1 ' (.2 \ TD 2Pi 2 ( i ) At2 Pk
2 (i)

where P " (i) is the second derivative of the kth order Legendre polynomial
K

in i. Equation (26) is obtained in the same manner as was (23) except that

(

the second derivative is now taken. Squaring both sides of (26) , taking the

expected value, and noting that

1) P.(i) P, (i) = 0 for j i k,
J K

2) P " f — \ = 0 for odd k,
k \ 2 /

and 3) E(6x. 6x ) = 0 for j i k,
J k

yields the noise error variance in acceleration,
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'N+iv r L"£ v 2 ;j . L- * \ 2 /J
T , , f N + l \ r r p . M /N+1NT
LP — P

(27)
At

(D

Since only quadratic and quartic fitting is normally used, the evaluation of

the first two terms can be given as

(?R
{

lp'"l-2-}J
N

J p
2

2 (i>

720
N5-5N3 +4N

and

'P4Hr
I 2 /J 44100 (3N2 -13)2

(28b)N ~ 49N(N2 -1)(N6 -29N4 +244N2 - 576) '

As was the case with fitting for velocity, Equation (27) is used with (28a)

for quadratic single smoothing and (28b) is added for quartic smoothing.

Double smoothing consists of using a new polynomial of a different

order and/or different smoothing interval, M, to smooth the velocity points,

take the derivative, and obtain accelerations. At first glance it would seem

that the error variance in acceleration could be expressed by an equation

similar to (24) but with cr. replacing cr and a., replacing cr. . However, an
X. Ji X, • X.

extra term must be added to the acceleration error equation when double

smoothing is used to account for the effects of non-zero correlation of

velocity errors introduced by the velocity fit. This correlation effect occurs
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due to the "slide" of the filter. To obtain a sufficient number of acceleration

points so that winds and density may be computed more often than every one

or two kilometer.';, any filter used is applied to the data in a sliding manner.

In single smoothing sliding goes as follows: after the N position points have

been fitted and an acceleration computed and assiged to the f ——J th point,

the filter is moved ahead a small number, normally two, of data points and

a new acceleration is determined. Thus, the time spacing between any two

adjacent acceleration points is S -At, where S is the number of points in the

slide. For double smoothing, the velocity smoothing interval slides along

the position data, in jumps of S points, generating velocities separated by

SAt. The acceleration interval then slides along the velocity points in jumps

of one point as accelerations are computed. This procedure, as in single

smoothing, results in accelerations computed at points in time separated by

SAt. A sufficient number of acceleration points are thus obtained to compute

winds and densities at relatively small altitude intervals, but the slide also

introduces correlation or dependence among accelerations since much of

the same position data was used to compute any two nearby acceleration points. The

meteorological parameters, however, are computed from a single acceleration

point so that the correlation in accelerations is not a source of error in the

meteorological parameters. In double smoothing, though, correlation among

velocity points must be taken into account in calculating the error in acceleration.

For example, in a 19-21 linear-cubic double smoothing with a slide of two,

the first velocity point is obtained from the 19-point linear fit to position
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points, the interval is advanced two points and the second velocity computed

using two new positions and 17 of the previous position points. This process

continues until 21 velocities are obtained, whereupon a cubic fit is made to

yield an acceleration.

To compute the noise error in acceleration, the correlation among

velocities is taken into account by the last term on the right hand side of

[pi fM+1\12 p , /M+l\ 2 MM ^2

cr..Z(——•) = (—77 + -Tj-7 —— H- . . . } -^- +y ) b.b.p. . -2_
x \ 2 / I M M J 2 £j LJ i j ij At 2

P^ (i) y P3
2(i) ***

where

P T ( i ) is the first derivative of the kth order Legendre polynomial
K.

in i, P (i) , used for the fit to velocity,

M is the number of velocity points in the smoothing interval,

AtE is the time spacing between velocity points,

cr. is the error variance in velocity (as given by 24),
X.

p.. is the correlation coefficient for the ith and jth.velocity points

and b., b. are constants as defined by
1 J

P,(i)Pl,(^) p2( i )P2.(M±i) 'p (1)P.(J^L)
b =

i M M M

I
kI V <»

for fitting polynomials of order k.

The complete derivation of the correlation term of (29) is presented in
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Appendix C, but it should be noted that the correlation term is only a function

of the degree and length of the two smoothing polynomials and the slide used

in applying the filter. Thus, if these parameters are known, a number

may be specified for the term which applies to any and all trajectories that

will be smoothed.

Once Equations (27) and (29) have been used to determine the noise

error variances in each of the rectangular components of acceleration, the

noise error in wind speed (Ref. 2 ) in the x and y directions can be determined

by

2 2 ^ _ Z _ \ 2cr • = cr. -H — - } cr.— w » i I * « I w* « i i • • i v • I / \
wx x \ z -g/ x \z -g/ z L (z-g)

P * Z I2 2 ,,n ,
\ T' - ^ ^ (30a)L (z-g)2 J z

wy y \ z -g / y \ z -g / z

where cr. 2 , cr. 2 , cr. 2 are the noise error variances in the velocities x, y,
x y z

z, cr.. 2 , cr.. 2 , cr.. 2 . are the error variances in the accelerations x, y , z, g
x y z

is the acceleration due to gravity, and cr and cr the errors in the xto ' wx wy

and y winds. The noise error in density is (Ref. z)

,2
(31)

where V2 = (x -w )2 + (y - w )2 + z2 ,
x y

w and w are the x and y winds,
x y

x, y, and z are the rectangular components of the total velocity V,

cr. , cr.. are the noise error variances in z and z , and
z z

cr 2 , cr 2 are the noise error variances in x and y winds,
wx wy
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The noise error variance in density has been expressed as a ratio of the

error in density to the computed value of density in order to simplify the

expression. Note that, as usual in dealing with the ROBIN system, vertical

winds are assumed not to exist.

Equations (13), (24), (27), (30), and (31) allow calculation of the

noise error in wind speed and density for ROBIN tracking with slant range

,,radar.s. This procedure may be.used to generate tables or graphs of the

noise error in a measurement as a function of altitude for given combinations

of radar accuracies, sample rates, filtering techniques, etc.

To be able to apply both the above method for computing noise error

for slant range radar systems and the method developed for range-rate

systems, a computer program was written called RFEP (Radar-Filter Error

Program). Four versions of the program were used in developing the methods

and using them to evaluate radar-f i l ter combinations, sample rates, etc. The

f i rs t two versions, RFEP1 and RFEP2, are simulation programs designed

to produce noise error in winds and density from randomly generated noise

error in radar data. RFEPl processes randomly generated Gaussian errors

in the spherical position coordinates in identically the same manner that

actual radar data would be processed. The result is the variance of the noise

error in wind and density just as it appears in the ROBIN data reduction

process. RFEP2 performed the same simulation for range-rate systems.

With the aid of the two simulation programs, the analytic methods presented

in this chapter were formulated and tested. The analytic method for slant
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range radar systems derived above was coded in the third version of the error

program, RFEP3, and the analytic method for range-rate systems which we

will examine below, was coded in RFEP4.

Figure 8 presents an example of the comparison of the results of the

simulation and analytic methods. The noise error in densi ty for slant range

radar systems (solid line) is plotted vs. altitude as computed by the analytic

method of RFEP3. The noise error as computed by the simulation program

is given at 5km altitude intervals. Simulation values are the result of the

processing of 30 random error values in the radar coordinates. Agreement

is seen to be generally good. Also shown in the f igure by a broken line is the

result of an earlier analytic method (Ref. 2) which does not take into account

the effects of correllated velocity errors. This method consistantly predicted

lower noise error than the simulation method arid was thereby determined to

be in error.
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Figure 8 Noise Error in Density Computed by Analytic and
Simulation Methods.
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Range-rate radars. -- The raw data from a tracking by range-rate

or Doppler radar consists of four quantities: range-rate, range, elevation,

and azimuth (R, R, E, and A) provided at points in time separated by the

sampling interval At. At the present time there does not seem to be any

generally agreed upon method for treating data from range-rate radars used

to track the ROBIN balloon. The smoothing method presented here along

with a noise error prediction scheme is suggested as the best utilization of

of the data to obtain the meteorological parameters. The procedure of the

proposed smoothing technique for range-rate radar systems begins with

smoothing the values of E and A with the orthogonal polynomial technique to

obtain values of E and A at the midpoint of the smoothing interval. If the

• *
length of the smoothing interval is N, then the noise error in E and A are

given by

n2

i °^2

(323.}

1 ' ) ' cr
2 /J 1 E

P 2 ( i )
At2

2 /N+l
cr • I ——

A \ Z / >• IN IN j •>
At2

...} — (32B)

I Pl ? - ( i ) I P3
2(i)

where, as in Equation (24), the f irst term in braces is used for linear fitting,

the f irst two terms for cubic fitting, etc. These terms may be given in terms

of N as in Equations (25a) and (25b). The smoothing on E and A data provides

E and A velocities at the point ( N + l ) / 2 which may be combined in a set of
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transformation equations to find the x, y, and z velocities at (N+l ) /2 . The

transformation equations are

x cos E cos A -R sin E cos A -R cos E sin A R

cos E sin A -R sin E sin A R cos E cos A E (33)

sin E R cos E 0 / A

which require values of R, E, and A at the point ( N + l ) / 2 in addition to R,

E, and A. The values of R, E, and A are obtained by averaging the radar

R, E, and A data and the value of R is obtained by averaging the range-rate

, *

R measurements. It was shown in a previous chapter that the number of R

points to be averaged to obtain a f requency response equivalent to that of

an N point linear di f ferent ia t ing filter is approximately (3/4)N. If we call

this number of points Q, then the error variances in the averaged values

of R, R, E, and A (denoted by an asterisk) are:

cr • 2* = o- • 2/Q (34a)
"D "D1\ ±\

<r 2* = or 2/Q (34b)

<r 2* = o- 2/Q § (34c)

crA
2* = r A

2 / Q (34d)

Applying the differential error approximation to Equations (33), the noise

errors in the rectangular components of velocity are then;

2a .x

a . 2

y

o - . 2
z

= [T]

2 ... "
0" * '

R
2

°"E

"A2

2 *

2*

"A2*

(35)
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where the matrix [T] =

cos'Eco.'A R1 »in'Eco.'A R'coi'Etio'A (EilnEeo«A4Acoi E«inA)f (AHiinE tioA-R'«ltiEco« A.ERco«Eco« A)' (ER«inEilnA-Rcoa E linA.ARcoiEcot A)'

co.'E.u'A R1 t in 'E.In 'A R'co.'Ecoi'A (Acog Eco.A-E »ioE«In A)' (AR iln Ect>« A*H .In E tin At ERcoi E iln A)1 (-ER . InEcgl A « R col Ecoi A • AH cu« E (in A)'

.in'E R'coi 'E C E'co.'E (Rco.E-RE.in E)1 0 •

The values of x , y, and z obtained from Equation (33) can now be

fitted with a new polynomial and the derivative taken to yield the rectangular

components of acceleration, x, y, and z. If the number of velocity points

fit in this manner is M then we have values of x , etc. , at (M+l ) /2 . The

noise error in the x acceleration is

FP 'fM+1Nnz FP , /M+I \"i2 2
 M b b *

rL l V"1~;J- . L 3 \ 2 /J , i ""x , r v x1 _jjoj
Vk-t-;n-M— --H '^nV--^Tf <36)

^ P!2 (i) ^ P3
2(i)

where

Q-S
2~* Tcos2 Ecos2Aa . 2" +(EsinEcosA + AcosEsinA) 2 _ 2

* I j *—» ̂  _ _ _ _ _ _ - ^ _ _.... ^_ -*^^^«^j..fc • AiV^VkJ -*—1 l-l i »» J^l I W

+(RAsinEsinA-ERcosEcosA-RsinEcosA)2 cr 2*
E

+(ERsinEsinA-RcosEsinA-ARcosEcosA)2 <r. 2*1

+F Y a
k

a
k+s| t_- I 1 (R 2s in 2Esin 2AorE

2 + R2 cos2 Ecos2 ACT 2)

The first term on the right hand side of (36) is evaluated in terms of M in

the same manner as Equations (32) were treated for N. The second term on

the right hand side is the correction to the error variance for the effect of

correlated velocities. This term may be obtained by arguments similar

to those used in correcting the acceleration error term for slant range radars.
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Expressions similar to (36) apply to the other rectangular acceleration

errors, cr.. and cr. . .
y z

When the acceleration components and their noise errors have been

determined, winds and density and their error variances can be found in

the same manner as used with slant range radar systems, that is, the errors

in wind speed and density for range-rate systems are given by Equations

(30) and (31).

The above development of analytic noise error equations for range-

rate systems is designed to make optimum use of the raw radar data. By

placing the coordinate transformation between the determination of velocities

and accelerations, we have restricted the type smoothing that can be used

to double smoothing. Although detailed bias error studies of the suggested

range-rate method have not been done, it is expected that double smoothing

is probably most desirable in any case.

Tests of the range-rate smoothing method on data from simulated

trajectories have shown that some approximations can be made that will

greatly simplify the computation of the noise error. The matrix [T] that

transforms the noise errors in spherical positions and velocities to errors

in rectangular velocities (Equation 35), can be divided into two parts; the

first three elements of each row which multiply cr • 2 ' '~, cr • 2 , and <r • 2, and
-t\ J^-> J\

the last three elements of each row which multiply cr 2*, tr 2*, and cr 2*.
K JL A

Using data from a sample trajectory, the individual elements of [T] can

be computed. When the elements of [T] are then multiplied by representative
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values of the appropriate error variances, the contribution of each element

to the error variance in x , y , or z can be noted. Such a comparison using

typical ROBIN tra jectory data shows that the contribution from the last three

terms of each row of [T] is from 103 to 10 times smaller than the contri-

bution from the f i rs t three terms. This occurs due to the fact that the

values of R, E, A are numerically much smaller than those of R, E, and A.

Thus, to a good approximation, these terms can be ignored and the matrix

[T] reduced to a 3 x 3 of the f i rs t three terms of each row. This approxi-

mation further simplifies the range -rate error computations since 1) the

noise error of the averaged values of R, E, and A are no longer needed

(the averaged values themselves are, of course, still required in the actual

data analysis) and 2) simplification of the $.. term of Equation (36) which

contains factors identical to the elements of [T]. Letting the negligible

elements of [T] be zero, the $.. for x acceleration of (36) reduces to

N-S. i-j
2 Ecos2 ACT

+ R2 cos2 A sin2 E<rA
2 ) . (37)

Similar reductions apply to the $.. terms for y and z.

Summary of the methods for predicting noise error. -- At this point

we ma.y summarize the noise error expressions for slant range and range-

rate radars. The equations for slant range radars are presented in Figure

9, starting with the assumed radar noise error and the filter parameters

and ending with the equations for percent error in density. Figure 10 shows

the same procedure for range-rate radar systems. The methods summarized
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Radar Character is t ics : cr z , cr 2 , a 2 - Noise e r ror var iance in range, elevation, and azimuth
R E A •

At - Sample interval = 1/(sample rate)

Filter Characterist ics: Single smoothing: N points fit wi th a k tn order polynomial, f i rs t derivative for
velocity, second for acceleration

S - Slide (number of points)

Double smoothing: N points fit with a k**1 order polynomial, first derivative
for velocity, then
M velocity points fit with an J_. order polynomial, first
derivative for accelerat ion

S - Slide (number of points)

Noise Error in Rectangular Position Coordinates: t

cos' E c

cos2 E sin2 A R2 sin2 E sin2 A R2 cos2 E cos2 A

sin2 E R2 cos2 E 0

"R

ffE

Noise Error in the Rectangular Velocity Components:

cr.M
X

cr.2

y
cr . 2 ,

I z /

C
(At)2
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in the figures allow calculation of the noise error in winds and density as a

function of altitude for any combination of radar and filter of the kinds used

in the ROBIN system. The propagation of the noise from its source in the

raw radar data to the final determination of winds and density can be examined

by these analytical techniques. Examples of the use of these methods will

appear later in this report.

Noise error is not, of course, the only criterion in judging a radar-

filter system. Bias error and its related phenomenon, f requency response,

are also of concern, especially where determination of fine s t ructure is

important. Unfortunately, analytic expressions do not exist for the calculation

of bias error and f requency response for the types of filters used on ROBIN

data, so that these quantities must be computed by a simulation technique for

each particular combination of radar, fi l ter, and nominal t ra jectory. (Analytic

expression do exist, however, for simpler types of filters. See Appendix A.)

This procedure consists of smoothing a simulated t ra jec tory with the particular

filter whose frequency response is to be found and comparing the resulting wind

and density structure with the "true" values used in creating the simulated

trajectory. The results of this rather laborious procedure can then be com-

bined with computations of the noise error by the methods presented above

to judge the worth of a filter for a particular application.

- - - - A Comparison of Noise Error in Winds and Density . .
for Slant Range and Range-Rate Radars

The noise error in the meteorological parameters for the two types

of tracking radar has been compared by using the error prediction methods
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obtained in the last section. Computations were made of the errors in

density and wind speed by both methods using the same simulated trajectory.

The radar errors assumed for the slant range radar were nominally those

of the FPS-16. For the range-rate radar the FPS-16 errors were assumed

for the errors in the R, E, and A measurements and . 5 meters per second

was taken as the 1 cr error of the range-rate measurement. The filters for

• the slant range'radar system used were the 19-21 linear-cubic for density

and the 51-35 cubic-cubic for winds. The fil ters used for the range-rate

system were those that have the same frequency response as the above, i. e. ,

the 19-21 linear-cubic with 15-point averaging and the 51-35 cubic-cubic

with 39-point averaging. In computations by either method, the same slide,

two, and sample rate, two points per second, were used. Table 9 summarizes

the input data to the two noise error programs which were used in the comparison.

The plots of noise error for both systems are presented in Figures 11 and 12

for density and North (x) wind, respectively.

Figure 11 shows, as one might expect, less noise error in density

throughout the flight, for the range-rate system. Noise error in wind also

shows general improvement at all altitudes for range-rate radars as shown

in Figure 12. Since the filters and radar errors used in the comparison

were chosen to be as similar as possible, the improvement shown in the

range-rate case should reflect just the value of the added range-rate measure-

ment (in this case with an accuracy of 0. 5 meters per second). In the section

of the trajectory where there is considerable motion along the slant range

the improvement is most pronounced. In density, for example, a 41%
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TABLE 9. --INPUT DATA TO THE COMPARISON OF NOISE ERROR FOR
SLANT RANGE AND RANGE-RATE RADAR SYSTEMS

.Radar Errors:
(1 or values)

Filters:

Sample Rate:

Slant Range
Radar System

Six Meters in Range

.'•15 mil in Elevation
and Azimuth

19-21 linear-cubic
for Density

51-35 cubic-cubic
for Winds

Slide 2

At = .5 second

Range -Rate
Kadar System

Six Meters in Range

. 15 mil in Elevation
and Azimuth

. 5 m/sec in Range Rate

19-21 linear-cubic, 15-
pt. averaging for Density

51-35 cubic-cubic, 39-
pt. averaging for Winds

Slide 2

At = .5 second
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improvement is obtained at 100 and 95 kilometers by using the range-rate

radar. The percentage improvement decreases at lower altitudes as the

radar detects more angular motion, until at 60 kilometers, only a 22%

improvement exists. The same effect appears in the North wind error where

the improvement is 40% at 100 kilometers and 23% at 60 kilometers.

The increased accuracy of the range-rate radar measurement is

greatest just where it is needed at the higher altitudes where slant range

radar measurements become very noisy. It should be pointed out that the

assumed range-rate accuracy of 0. 5 meter per second used in this comparison

is probably a rather conservative estimate of the accuracies that are present ly

available for range-rate radars. Certainly even less noise in the measurement

of the range rate would result in greater advantage in the use of range-rate radars.

An Examination of the Smoothing Techniques
Presently in Use with Slant Range Radar Tracking

The May 1970 High Altitude ROBIN Program (Ref. 2) was a 19-21

linear-cubic double polynomial filter to determine densi ty and a 51-35 cubic-

cubic double filter for winds. These fil ters were chosen for their combination

of low bias and noise error over the 100 to 60 kilometer region. When the

noise error for these filters was computed, the effect of correlated velocity

errors for double filters was not taken into account. In order to determine

what effect, if any, the added noise error would have on the choice of optimum

filters for the High Altitude ROBIN, a reexamination of density filters was

made. The results of the densi ty filter study were then used to determine

if a reexamination of the wind f i l ters , a more laborious process, was required.
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As we shall see, it was determined that no reexamination of wind filters was

needed.

The more promising double polynomial f i l ters considered in Reference

2 for density determination were the double filters: 41-11 cubic-linear,

19-7 l inear-l inear, 35-9 cubic-linear, 21-21 linear-cubic, 21-19 linear-^

cubic, 19-21 linear-cubic, and 31-7 linear-linear, and single fil ters 21 and

31 quadratic. All these filters have relatively small bias and noise error

over the altitude range of interest. To determine which of these filters

should be recommended, plots of the noise and bias errors as a function of

altitude were made for each filter and the results compared. Figure 13

presents these plots. The computation of noise error in density for each

filter was made using the technique outlined in Figure 9. For all f i l ters the

assumed radar errors were six meters in range and . 15 mil in elevation

and azimuth, At was taken as . 5 seconds and a slide of two points was used.

Bias error was computed by the methods described in Reference 2. The

absolute value of the bias was used for convenience in preparing the plots.

An examination of Figure 13 shows that, based on the criterion of

the best combination of noise and bias error over the entire altitude range,

the group of filters: 19-21, 21-21, and 21-19 linear-cubic appear to be

superior, the other double and single filters may be eliminated for excessive

noise and/or bias over all or a major part of the altitude range. Choosing

between the linear-cubic fil ters in the "20-20" range requires closer

examination. When this is done, the 21-21 can be eliminated on the basis

of slightly larger bias of the three above about 80 kilometers. The choice
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between the 19-21 and 21-19 is almost impossible to make as they are so

evenly matched in both noise and bias. If a point by point comparison is

made, however, the 19-21 shows slightly smaller bias more often for the

altitude range. Based on this d i f f e r ence , albeit ve ry small, the 19-21

linear-cubic double filter appears to be the best for density determination,

as was previously found in Reference 2.

No new filter was found which has a better noise and bias error

profile than the density filter now used in the High Altitude Program.

Based on this fact and the knowledge that the effect of correlated velocity

errors is most important at altitudes above about 85 kilometers where

wind error computed by any filter is large, a reexamination of the wind

filters was not undertaken.
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THE EFFECT OF LAUNCH ELEVATION AND AZIMUTH

Much of the character of the descending section of the ROBIN trajectory

is determined by the conditions at the rocket launch. The launch elevation

angle primarily determines, for a given vehicle, both the altitude and down-

range position at apogee. The direction of launch with respect to the wind

structure, the launch azimuth, ,also has an effect on the trajectory of the

balloon as it falls. In order to examine what influence launch elevation and

azimuth have on the accuracy of wind and density measurements, error

analyses were performed on theoretical trajectories generated to simulate

various launch conditions. An examination of the results should suggest

•what launch conditions are desirable for achieving minimum noise error.

Elevation Angle

Four theoretical trajectories were generated by program THEOT,

one trajectory for each of the four launch elevation angles 72 , 78 ; 82 ,

and 88 . The launch vehicle assumed in each case was the Viper-Dart

rocket. Since the program computes only the trajectory of the balloon and

not that of the rocket, the position and velocity of the balloon at the release

point were input for each angle. The positive downrange direction (the

launch direction) was taken as North and positive crossrange direction as

East. Table 10 summarizes the balloon release conditions for the four

launch angles.

73



TABLE 10: BALLOON RELEASE CONDITIONS FOR THE

STUDY OF THE EFFECTS OF LAUNCH ELEVATION ANGLE

Balloon Release Conditions (Viper Dart Vehicle)

Launch Angle Release Position
Altitude Downrange

Release Velocity
Vertical Horizontal

o

78° .

82°

88°

117000 m

126600 m

131200 m

135000 m

80000 m

57400 m

39200 m

10000 m

v *~> i. \j *** i. \, y

0 m/s

50 m/s

50 m/s

52 m/ s

v ctw v- IL y

530 m/s

360 m/s

240 m/s

60 m/s

North Wind East Wind
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Figure 14 Assumed Wind Profiles
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The above launch angle data was abstracted from information supplied

by Mr. Bruce Bollermann of Space Data Corporation, manufacturers of the

Viper-Dart rocket.

. As the wind structure has an effect upon the resulting noise error, the

same wind structure was used in each simulated flight. The wind structure

used was an approximate version of the actual structure measured by Viper-

Dart 12 (Ref. 2 ). Figure 14 presents this wind structure. The magnitude

of the wind directed North is assumed to vary sinusoidily with altitude. The

wavelength was taken to be ten kilometers and the amplitude ten meters per

second. A constant ten meter per second North wind was added to the sinu-

soidal structure so that the wind speed varies between 0 and 20 meters per

second. In contrast, the speed of the wind blowing East was assumed to be

constructed of four linear functions of altitudes. From 60 meters per second

at 40 kilometers, the East wind speed increases linearly to a maximum of

100 meters per second at 70 kilometers. A sharp decline reduces the speed

to ten meters per second by 75 kilometers, after which the speed remains

at that value to 85 kilometers. Above 85 kilometers the wind speed again

increases so that at 100 kilometers the speed is 27. 5 meters per second.

This North and East wind structure was used in each of the four elevation

angle trajectories and was also used in the investigation of azimuth effects.

Noise error computations for wind and density were made using the

methods for slant range radars and range-rate radars coded in RFEP3

and RFEP4, respectively. The analysis of noise error for the slant range
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radars was made using the 19-21 linear-cubic filter for density error and

the 51-35 cubic-cubic filter for wind error.

The 19-21 linear-cubic filter with 15-point averaging was used for

density in the analysis for range-rate radars. For winds the 51-35 cubic-

cubic with 39-point averaging was used. The 1 o- noise errors in position

coordinates for both radars were taken to be: six meters in range and . 15

mils in elevation and azimuth, the nominal FPS-16 values. The noise error

in the range rate for that type radar was 0. 5 meter per second. In both cases

a sample rate of two points per second (At = . 5 sec) was used. The standard

deviation of the noise error in each meteorological parameter was computed

at each five kilometers from 60 to 100 kilometers and plotted versus altitude.

Figures 15, 16 , and 17 are the plots for density, North wind, and East wind,

respectively for slant range radars, while Figures 18, 19, and 20 show the

same plots for range-rate radars.

Slant range radars. --Figure 15 shows a rapid increase in density

accuracy with increasing elevation angle. This effect is especially pronounced

at the higher altitudes (85 to 100 kilometers). This is to be expected since

o o
for the greater launch elevation angles, 82 .and 88 , the path of the balloon

is closer to the radar site, and thus much of the motion at the high altitudes

is along the range direction. Because accuracy of the measurement of range

is independent of range (within the limits of tracking of the radar) velocity

and acceleration along the range direction can be obtained with little noise

error. As the elevation angles become lower, the high altitude accuracy
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rapidly decreases. At 100 kilometers the noise error in the density is 24%

o o
for the 72 launch, but only 4% for the 88 launch,. In these cases more

of the balloon motion soon after apogee appears to the radar as angular

motion. Moving to lower altitudes, the noise error for all launch angles

o
diminishes rapid).y to a minimum at about 77 kilometers. Here the 72

error is less than 2% and the 88 error almost 1/2%, By 60 kilometers

the 72 error is about 3% and the 88 about 1%, so at the lower altitudes

the improvement in noise error is not as great as at higher altitudes. The

noise error in North, or downrange, wind speed error , Figure 16, shows

much less dependence on launch elevation angle. At altitudes above 80

or 85 kilometers, the higher elevation angles do result in lower noise error,

but the overall wind accuracy is so poor as to make the ROBIN-slant range-

radar combination of little value as a downrange wind sensor above, say,

90 kilometers. At altitudes below 80 kilometers, downrange wind error is

very low, about 1 m/sec for all four elevation angles for this wind f ield. The

accuracy situation at high altitudes is somewhat improved in the cross-

range (East) wind case. Here the three lower launch angles, 72 , 78 , and

82 , still have wind speed errors much greater than ten meters per second

at 100 kilometers, but the 88 launch angle has improved the high altitude

accuracy considerably, having a 1 a error of only five meters per second

at 100 kilometers. Lower altitudes, again, show better accuracy of a few

meters per second for each angle.
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The considerable difference in the high altitude noise errors in the

North and East winds may be explained as follows. The North (downrange)

wind is derived from a change in the North-South position of the ROBIN

which is measured by changes in both range and elevation angle from the

radar. Thus, the error in the North wind is determined by errors in range

and elevation angle. Under the launch angles specified, the range error makes

the larger contribution to wind error. On the other hand, the East (cross -

range) wind is derived from a change in the East-West position of the ROBIN

which is measured by a change in the azimuth angle of the radar. The error

in the East wind, then, is determined by the error in the azimuth angle.

This error is smaller than the constant six-meter error in range which

composes the greater portion of the error in the North wind. Thus, the

error in the East wind is less than the error in the North wind, under the

assumption of a launch in the North-South direction (see Figures 16 and 17).

In addition, because the error in the East wind depends upon angular errors,

this wind is therefore more sensitive than the North wind to launch elevation

angle.

Range-rate radars . --The effect of launch elevation angle on density

error for range-rate radar systems, as shown in Figure 18, is much the

same as the effect for slant range radars. Increased accuracy throughout

the flight is obtained.by using higher elevation angles, with the most improve-

ment found above 85 kilometers. The curve representing the noise error for

the 88 launch elevation shows that error in density can be reduced to below
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1% for the entire flight when this nearly perpendicular launch angle is used.

Component wind speed noise error versus altitude is plotted in Figures

.19 and 20 for North (downrange) and East (crossrange) wind, respectively.

The behavior with launch elevation is again similar to the slant range radar

case; the major difference between them being only the overall improvement

in accuracy gained by the use of range-rate tracking.

Wind Structure

To examine the effect of the magnitude of the wind field and its

direction on noise errors in winds and density, trajectories were simulated

using various wind structures. Three orientations were chosen of the wind

structure used for the elevation angle study. The first orientation, called

A, was the original orientation of the sinusoidal wind blowing North and

the multi-segmented linear wind blowing East. Orientation B results from

a 180 change of direction of both winds so that the sinusoidal wind is directed

South and the linear wind West. Orientation C is an interchange of the two

wind components, i. e. , the sinusoidal wind blows East and the linear North.

Figure 21 presents the three situations.

One can see from Figure 21 that if we regard orientation A as a

o
launch with azimuth angle of 0 , orientation B is a launch with azimuth of

180 , and C is a launch with azimuth 90 . The effect of these various wind

directions on noise in wind and density was examined for both slant range

and range-rate radar systems using RFEP3 and RFEP4 to plot, as for the

elevation angle study, the noise error versus altitude. Figures 22, 23 ,
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and 24show the results for slant range radars and 25, 26 and 27 for range-

rate radars. In each case a launch elevation angle of 82 was used.

Slant range radars and range-rate radars. --From the six figures,

22 through 27 it is readily seen that the effect of launch azimuth angle on

noise error in winds and density is quite negligible. The difference between

the 1 cr values for each orientation is in nearly all cases too small to appear

on the scale of the plot. This result indicates that at altitudes above about

50 kilometers the magnitude and direction of the wind field has little influence

on the noise error in winds.

z(alt. )

Sinusoidal wind

z(alt. )

Sinsoidal wind

Launch
direction

(E) Orientation A

Launch
direction

-x(N)

Orientation B

(alt. )

Linear wind

Launch
direction

-x(N)

Orientation C

Figure 21 Wind Field Orientations for the Study of Wind
Direction Effects .
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Summary

The investigation of the effects of launch elevation, launch azimuth,

and wind structure on the noise error in winds and density revealed several

useful points. With regard to the elevation angle, it was found that with each

radar better accuracies were achieved with launch elevations near the vertical.

This fact is not surprising, as mentioned.above, since higher launch elevations

result in balloon descents closer to the radar, thus reducing the effects of

angular error. The improvement became proportionately greater with greater

elevation angles for both varieties of radar. With regard to launch azimuth,

it was found that crossrange winds can be measured more accurately than

downrange winds. This results because changes in downrange measurements

are observed by a radar in its range and elevation measurements while the

crossrange effects are observed by the azimuth of the radar. Consequently,

if the east-west wind is desired to maximum accuracy, the launch should be

directed in a northerly or southerly direction, a.nd vice-versa.
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CONCLUSIONS AND RECOMMENDATIONS

The study of radars, filters, and launch conditions for the ROBIN

passive sphere system has revealed several heretofore unsuspected conclusions

and confirmed some others which were already held. The study has shown

how the present FPS-16 ROBIN system can best be utilized as well as indi-

cating how an improved system which provides more accurate winds and

densities can most economically be achieved.

A summary of the conclusions of this study and recommendations .

for further resea.rch are presented below:

1) Improved accuracy of the FPS-16 radar passive sphere system

is most economically achieved by a Doppler measurement of range-rate.

Modified FPS-16 radars that include a Doppler measurement are presently

in existence. To date they have not been fully utilized to provide optimum

density and wind reduction.

2) Radar measurements of angular rate, or angular acceleration

are not economically feasible. It is more economical to measure angles by

radar and numerically differentiate to determine angular rates and accel-

erations.

3) The effect of correlated errors in accelerations from double

smoothing has been determined and expression derived to calculate its

effect. The effect of correlated errors in acceleration was not considered

in Reference 2. The resulting estimate of wind and density errors for

double smoothing technique is somewhat higher than that shown in Reference
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2, particularly above 80 kilometers. Nevertheless, the conclusion that

the 19-21 linear-cubic provides optimum density measurements is still

valid, even after including the correlated errors term.

4) With the FPS-16 tracking system both density and wind accuracy

can be improved by launching at a higher elevation angle. Launching at

88 degrees improves density accuracy by a factor of three or more over

a 78 degree launch. Improved wind accuracy is also significant - especially

in the cross-range direction.

5) With the FPS-16 tracking system the cross-range component of

winds can be measured to higher degrees of accuracy than can the down-

range component.

6) The magnitude and direction of the wind profile has no significant

effect upon the accuracy that can be achieved In measuring the profile.

7) There is no significant di f ference between wind and density

accuracy resulting from smoothing on R, E, and A coordinates and smoothing

on x, y, z coordinates. Since the transformation equations are simpler

for x, y, z smoothing, this is the recommended smoothing procedure.

In addition to the above conclusions, the following items warrant

further investigation:

a) The feasibility of installing a Doppler measurement device on

all FPS-16 radars that are used for tracking passive spheres.

b) Incorporating into the High Altitude ROBIN Program an optimum

filter for winds and density measurements when tracking with a Doppler

radar.
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c) The feasibility of using a mini-computer, on a real-time basis,

to predict the trajectory of a sphere from its equations of motion and past

history and then using the predicted trajectory to augment, the tracking

capabilities of the radar.
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APPENDIX A

DERIVATION OF FREQUENCY RESPONSE f ( w , Q )

Assuming the Doppler radar measures directly without distortion of

frequencies of interest, then discounting noise, the radar output of the sinusoidal

wave R=Asin (2rriiJt) is of the form:

R = 2rrcoAcos (2ntot)

Using moving averages, R is calculated as

Q
. '•'>' 1 ^

R = — ) 2TTco Acos (2n co t.) . (A-l)
D Q £-1 i

If At is the time spacing between data points, then Equation (A-l ) can be

rewritten as:

Q-l
2

• * 1 T1

R^ = —=- ) 2 rr coA cos (2rr co i At + 6 ) (A-2)
D Q L-i

Q-l

where (3 is the phase shift required so that time = 0 is on the same point of

the curve previously occupied by time = t_ . .

~2

By trigonometric identities, Equation (A-2) simplifies to:

Q 2 n co Atsin —————
• * _ 2 rr co Acos (3 f 2
D ~ Q t 2 n co At

sin

The frequency response is given as the ratio of the smoothed R to the
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true R. The true R at the midpoint of the interval (i. e. , t = 0 after the

translation b y p ) i s R = 2 r r a ) A cos p

Thus,

*
-1 (si" (On o» At) -I
Q I s in(ncoAt) J • (
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APPENDIX B

DERIVATION OF THE NOISE ERROR VARIANCE
FOR DOUBLE POLYNOMIAL SMOOTHING

The double polynomial smoothing technique consists of the determination

of a velocity from a linear combination of position points and the determination

of an acceleration from a second linear combination of velocity points. The

linear nature of this process allows one to calculate the error variances in

velocity and acceleration by applying the smoothing technique directly to the

assumed errors in position. Noise error in position is assumed to be normally

distributed with a mean of zero, and no correlation is assumed to exist between

noise error in different data points.

Let j 6x r be the set of all position errors in any of the three position •

coordinates. By our assumptions above, E(6x r) = 0 for all r. So we have

var (6x r) = crx
2 = E C(6x r)

2 ] for all r. Also, let {6Xj} and |&x j be the sets

of noise errors in velocity and acceleration. We wish to determine var(6x-)
J

= crj, and var (6x p) = o-/ . The double polynomial smoothing technique

determines members of the set j & x . r in the following manner: For an N,M

double polynomial filter with a slide of S, the first velocity error Sxj is

formed by

N

6Xl = a6X (1)

where "|a--r are the weighting coefficients resulting from the Legendre poly-

nomial fit of position points to obtain velocity. To determine 6x2 the first
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S position errors are discarded and the next S position errors ( in chronological

order) are added so.that

N

6x2 = ) a i6x „ . (2)
.Z_i x i + t >
1= 1

In general,

N

6x. = ) a^x . j = 1, M . . (3)

i = 1

A single acceleration error is then formed by

M

6x = y b. 6x; . . (4)
l—i J J

where \ h - \ a-re the Legendre coefficients from the acceleration smoothing.

Finding cr. in terms of cr :
x x

N N

since cov(6x i6xj) = 0 for i 4 j. Thus,

N

cr. = cr. . = ) a. cr for all j. (6)
x xj <_• i x

i= 1

To find cr.. in terms of cr. , we apply the definition of the variance again:
x x

M

(y b. 6x . ) 2 l (7)
\L J J / J
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But since velocity errors are correlated by the sliding nature of the smoothing

cov (6x 6x.) / 0 for i i j, or
i J . • • '

M M

cr..2 = y b.2 cr .2 + y V b. b p cr.2 , (8)
x Z.J j x Z-. £-j j k rjk x

where p., = E(6k. • 6k, ) / cr. 2 . ' (9)
jk j k x

To find p for j ^ k, we may substitute (3) into (9)

N N

jk cr. L\Z-i i i + (j -1)S / \./LJ . i i + (k-l)S cl
x 1= 1 i=l

N N

= 7T"E[I a i 2 6 x i - f ( j - i )s 5 x i + (k-i)s + n aia
q

6xiHi-i)s6V(k-i)s]
X ^ ^ (11)

N

= —— I / a .2E(6x. ... , ,Q6x. ... M«s)lcr. •-Li i \ i + ( j - l )S i + (k - l )S / J
x i = 1

N

i r ̂  v • ( ^ "I
"oT2 IL L °'iaq \ X i+(j-l)S X q+(k- l )S / ' j

A. . i

(12)

The first term on the right hand side of (12) is non-zero only if j=k since any

two different 6x. are not correlated. However p j = k are not of interest.

Using the same argument, the second term is non-zero only for combinations

of i, q, j, and k such that
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i + ( j - l )S .= q + (k-l)S (13)

i - q = (k-j)S ' (14)

Therefore the only non-zero terms of the double summation are those in

which the subscripts of the a's are different by an integral multiple of S,

the particular value of this multiple depending upon the values of j and k.

If, for example, (k-j)S = 2 the double summation term, which is p , can
jk

be written out as

p.- = [a! a3 + a2a4 -K . .+aN aN]—- . S(k-j) = 2 (15)
jk • v crk

Similarly, if (k-j)S = -2, the expression for p is

p = [a3ai + a4az +. . . aN aN_ 2 ] —^- . S(k-j) = -2 (16)
x

Comparison of (15) and (16) shows that for a given S

A simpler expression for p can be found by generalizing from (15) , (16),
jk

and (17).

N-c 2

i = l

where c = |S( j -k) | .

Equation (18) can be further simplified by recalling Equation (6),
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N
2

0"
X

i= 1

Substituting for cr. Z in (18), we have

N-c

a

.2 = 7 a.2 a- * ' (6)
X tJ 1 X

i i-f-c
i = l

c = | S ( j - k ) | . (19)

i= 1

2Equation (19) for p may then be used with (8) to express tr..2 in terms of
jk x

cr. , and cr. may be found in terms of or by Equation (6) so that the noise
X X X

error variance in acceleration for double polynomial smoothing is determined.

A great deal of labor in computing values of p can be reduced by
jk

noting that S(j -k) = S C(j + 1) - (k + 1) ] so that in general p = p.
J K J r l j K T " !
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APPENDIX C

RADAR ANALYSIS OF THE AN/FPS-16
TRACKING A FALLING SPHERE

Aaron S. Soltes
Raytheon Company

1. INTRODUCTION

This report describes the results of a study aimed at enabling those

interested in the falling sphere upper atmospheric sensing technique to utilize

the AN/FPS-16 family of tracking radars to best advantage for trajectory

measurements.

It includes an error analysis of the AN/FPS-16 radar tracking a nomi-

nal ROBIN falling sphere trajectory; an evaluation of the results; and recom-

mendations on selection of type of sphere, settings of the radar, and existing

modification to the AN/FPS-16 that should be employed, if available, to improve

performance.

It is shown that the AN/FPS-16 radar, when properly employed, possesses

the capability for measuring falling sphere trajectories to its rated precision.

However, as an occasional user of the radar rather than its operator and main-

tainer, the meteorologist is cautioned that the methods at his disposal for

controlling the quality of his measurements are of necessity limited, and that

he had best take certain precautions. Furthermore, with so many AN/FPS-16

radar configurations in the field, it was necessary for a first analysis to treat

the radar and its variations in a generalized way. Comments are offered as

to how the performance of particular radars may be further optimized by

individual attention.
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2. RADAR ERROR ANALYSIS

The AN/FPS-16 family of radars have a rated precision or instrumental

error of 0. 1 mrad rms in angle and 5 yds rms in range. These figures are

the minimum error levels of the radar design, achievable under optimum

conditions with the equipment properly maintained and calibrated, and in the

absence of error components that are a function of target dynamics, echo

signal strength, and external environment. In practice, the optimum conditions

under which rated precision is attainable prevail in only a portion of a radar's

total volume of coverage, since performance is actually dependent upon the

target cross-section, range, and dynamics, and the operating environment,

all of which are outside the control of the radar designer.

In order to utilize the AN/FPS-16 radar to best advantage for falling

sphere trajectory measurements, it is important to evaluate its performance

in the context of that tracking task, and to determine the regions and under

what conditions rated performance may be expected.

There are two general categories of errors associated with a tracking

radar - fixed errors, which are essentially independent of the conditions

under which the radar is operated, and variable errors which depend upon

the conditions of operation. In the case of falling sphere measurements, it

is recognized that the meteorologist is often but an occasional user of the radar,

and therefore, has little control over the fixed errors that are primarily

functions of design, maintenance, calibration, and environmental conditions.

He does have some options, however, which enable him to minimize the
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contributions from some of the sources of variable error, and we will con-

centrate on them.

(A) Radar Settings

The radar design incorporates several adjustable parameters

which enable the operator to adapt its characteristics to a wide range

of target characteristics. This permits some latitude in matching

the radar to a particular task at hand in order to minimize target-

dependent errors. In order to take advantage of the adjustable radar

parameters it is necessary to determine the best settings to suit the

falling sphere measurement application and to supply this information

to the radar operator. Failure to guide the operator may result at

best in measurements that do not fully utilize the capabilities of the

system., or at worst in measurements that include unnecessary errors.

As a minimum, the radar settings should be recorded with the data to

permit post-flight analysis and check.

(B) Radar Modifications

At some sites, there are several tracking radars available, some

of which incorporate modifications that would permit better performance

for falling sphere measurements. An analysis of how the various

existing AN/FPS-16 modifications affect its performance provides the

basis for recommendations as to which modifications to employ for

falling sphere measurements.
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2. 1 Assumed Conditions

The parameters and conditions of the radar, sphere trajectory,

and sphere radar characteristics assumed for the purposes of the analysis

are stated below.

2. 1. 1 Parameters of Basic AN/FPS-16

The significant radar parameters vary somewhat from

one source of information to the other. The set of parameters utilized here

*
are shown in Table 2.

2. 1. 2 Falling Sphere Trajectory

The nominal sphere trajectory utilized in this analysis

ff, >,C

is the "Model Balloon Trajectory" appended in tabular form in Table 1. It

is plotted in Figure 1 showing points where maxima .and minima occur. The

plot is in the plane of the trajectory, and to facilitate computation the radar

is assumed to be located at the origin of the coordinates.

The various parameters of the sphere trajectory, including

• »*

slant range (R), range rate (R), range acceleration (R), elevation angle (E),

angle rate (E), angle acceleration (E), and altitude are plotted as functions of

time in Figures,2, 3 and 4 respectively.

2. 1. 3 Radar Characteristics of the Spheres

Two types of inflatable spheres are commonly used for

falling sphere measurements - a metalized surface reflecting sphere, and

a transparent sphere containing a corner reflector.

See for example, Barton, D. K. , Radar System Analysis, Prentice-
Hall, Inc. , Englewood Cliff, N. J. , page 343.

Received from N. Engler, UDRI by letter 1/5/71.
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TABLE 2

Power output (P )

Pulse Width (T)

Repetition Rates (f )

Antenna Gain (G )
o

Antenna Beamwidth (8 )
o

Wavelength (\)

Receiver Bandwidth (p)

Receiver Noise Factor (NF)

Plumbing & Duplexer-losses (L)

Angle Tracker

Velocity Lag Error (1/K )

Acceleration Lag Error (1/K )
A

Servo Bandwidths (p )

Range Tracker

Velocity Lag Error (1/K )

Acceleration Lag Error (1 /K )
ct

Servo Ba.ndwidths (j3 )

1. 0 MW peak .

1. 0^sec

160 to 1707 pps

44. 5 dB (12-foot reflector)

1. 1° (19. 2 mrad)

5. 3 cm (mid-band)

1. 6 MHz

11 dB

4 dB

0. 0033 mrad /mrad / sec

0. 016 mrad /mrad / sec

0. 5-» 6 Hz

0. 00018 m/m/sec

0. 00064 m/m/sec 2

1. 0-»10 Hz
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(1) A 1-meter diameter reflecting sphere has a

calculated radar cross section of TT/4 meter2 .

This value is assumed. When, for convenience,

the approximate value of 1 m2 is used a 7% error

in radar range calculations results.

(2) - ROBIN sphere with corner reflector. A 25 m

*
radar cross-section is assumed .

2 .1 .4 Other Assumptions

This study is focused on those factors about which the

meteorologist user has a choice, and of necessity assumes that all other

sources of error, over which he has no control, are either absent or within

the rated limits of the radar. Such factors include antenna alignment, bore-

sighting, orthogonality, servo adjustment, data pick-offs, wind, mechanical

and thermal deflections, etc. ; range servo zeroing, jitter, receiver delay,

servo adjustment, data read-out, etc.

It is also assumed that provision is made for refractive

correction of the data; that the elevation angle of the target is sufficiently

large to make multipath and residual refraction negligible; and that there

is no discrete interference to degrade the measurements.

See J. B. Wright, "A Summary of AFCRL, Passive-Sphere Development
Efforts and Experience", Proceedings of Symposium on Status of
Passive Inflatable Falling Sphere Technology for Atmospheric Sensing
to 100 km - NASA SP-219, Sept. 1969, p. 9.
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2. 2 Radar Error Sources Considered

The primary sources of radar error that have been considered

are the target-dependent variable errors produced by target motion and

thermal noise.

Target motion introduces dynamic lags in the angle and range

servos as a function of the servo bandwidths, while .thermal noise establishes

the ultimate limiting factor by which the pulse width and the antenna beam

width can be resolved to determine the target position coordinates. The

thermal noise is evaluated in terms of the signal-to-noise-ratio (S/N) which

is a function of the radar parameters in conjunction with the target radar

cross-section and target range from the radar.

2. 3 Radar Error Calculations

2. 3. 1 Preferred Settings of Console - Adjustable Parameters

Pulse Width (T) - the pulse width is set at 1 H sec to

provide an opportunity for good S/N.

PRF (f ) With the 1 U sec pulse width, the PRF should

be set as high as possible but not to exceed 1000 pps in

order to provide the largest possible number of target

hits per unit time without exceeding the duty cycle limit

of 0. 001. The maximum unambiguous range requirement

of R = 133. km (see Figure 1) presents no problem,
max

since it allows a maximum PRF of 1120 pps. The maxi-

mum available PRF not to exceed 1000 pps is f = 853.
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Servo Bandwidths (6 ) - A time constant of 0. 1 sec is
n

desired, if it can be managed. The observation time,

t , is established by the servo bandwidth and represents

the integration time of the servo:

1
t — "~T n "

Accordingly, a servo bandv/idth of p =5 Hz will be used

to yield t = 0.1 sec.
o

2. 3. 2 Dynamic Lags

The dynamic lags produced by the maximum target dynamics

are negligible compared with the fixed errors of the radar for the model tra-

jectory and radar location of Figure 1.

From Figure 3, the maximum angle rate and acceleration

occur at T = 90 sees, and T = 106 sees, respectively

E = - 5. 95 mrad/sec. @ T = 90 sees,
max

• •

E = + 0. 196 mrad/sec2 @ T = 106 sees,
max

Using the angle tracker lag coefficients of Table 2, the

maximum angle lag errors are as follows:

Max. velocity lag error = E /K,_ = 0. 02 mrad} & max V

Max. acceleration lag error = E /K = 0.0031 mrad.0 max A

Similarly, the maximum range rate and acceleration are,

from Figure 2
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R = - 421 m/sec @T = 84 sees.
max

R = + 10. 7 m/sec2 @ T = 102 sees,
max

Using the range tracker lag coefficients of Table 2, the

maximum range lag errors are as follows:

•

Max. ranee lag error = R /K = 0. 084 meters.ta max v

Max. acceleration lag error = R /K = 0. 0075 meters.
max a

To investigate the possible impact of the radar-trajectory

configuration of Figure 1 on the azimuth servo lags, let us assume that the

o
trajectory is rotated 90 around its initial point so that its plane is essentially

normal to the radar line of sight. The maximum azimuth rate will occur at

. T = 0 sees when the horizontal velocity of the sphere is highest.

H = 305 m/sec @T = 0 sees.

• H 305 m 0 00 ,.
A = — = •— = 2 .28mrad / sec

max R 133 km

Max velocity lag error = A/K = 0. 0076 mrad/sec.

The azimuth angle lag is also negligible.

The total variable error remaining is that due to

thermal noise.

2. 3. 3 Region of Optimum Accuracy Allowed by S/N

If we set the maximum angle error due to thermal noise

to 0. 1 mrad (so that the total error due to fixed and variable errors is

x 0. 1 mrad),
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N / 2 S / N f / Pr n

= 0. 1 x 10"

and solve for the required S/N, using the values of f = 853, ( 3 = 5 , and
n

8 = 19. 2 mrad from Table 2 and 2. 3. 1 we get

1 x 9 o N 2 Pn
S/N = !(-£) x Ji

t r

. Z x l 0
2 \ , ' 853

0. 1 x 10"

= 20. 2 dB

The linear error at the target at the maximum range of

R = 133. 5 km (see Figure 1) due to the total elevation angle error of
max 6 fo

*s/lT x 0. 1 mrad iis

<r = R x cr_
z max E

3 3
= 1 3 3 . 5 x 1 0 x\/Tx 0. 1 x 10" = 18. 8 meters rms.

We now evaluate the range error due to thermal noise

with the same S/N, f and P
r n

T 150
cr • = = meters rms

\TS/N f /P N / P 0 4 x 853/5
r n

= 1. 13 meters rms.

Together with an estimated fixed range error of 2 meters, this yields a total

range error of
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,
r total

+ 1 13Z = 2. 3 meters rms

.The next step is to substitute the parameters of the radar

from Table 2 into the radar equation to determine the maximum, ranges at

which the two types of spheres can be tracked with a S/N of 20. 2 dB.

R
max

2 X2 A
o e

1/4

where

(4n) S/N KT 3 NFL

sphere cross section in m2

K

T

-23
Boltzmann's constant = 1. 37 x 10 watts/deg/Hz

o

For A = 1 m2 , R
e max

For A = 25 m2, R
e max

291 Kelvin.

= 84 km.

= 188 km.

It is seen that the basic AN/FPS-16 radar alone (Curve A of Figure 5) is not

capable of accurately tracking the 1 m reflecting sphere over the model balloon

trajectory, Figure 1, but can perform satisfactorily with the sphere containing

the corner reflector to augment the radar cross-section to 25 m (Curve E

of Figure 5).

2. 4 Performance Improvement Calculations for Radar Modifications

There are several existing modifications to the basic AN/FPS-16

that can enhance its performance with respect to S/N. These include a 3MW

transmitter, a 16-foot diameter antenna, a low-noise mixer and preamplifier,

and a parametric amplifier. The range improvement factor for the same S/N

(20. 2 dB) is calculated below for each of these modifications.

113



Radar Configuration

Basic AN/FPS-16
16' Ant. (47db) + Low Noise Mixer "
16' Ant. (47db) + 3 MW Trans. "
16' Ant. (46db) -f Paramp. "
16' Ant. (47db) + Paramp. "
3MW Trans. -I- Paramp. "
Basic AN/FPS-16 Z5M2

Model Balloon
Trajectory

20 40 60 80 100 120

Distance Down Range from Radar Site (Km)

140 160

Figure 5. High Accuracy Regions of Coverage for Basic AN/FPS-16
and Combinations of Modifications when Tracking 1m and
25m2 Targets.
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2.4.1 3MW Transmitter

Referring to the radar equation in Section 2. 3, an increase

in P from 1 MW to 3 MW yields a range improvement factor as follows

R(3MW) _ / 3 \ 1 M

R(1MW) V 1 / ~ ' *~

It should be noted that the higher duty cycle of 0. 00167 permitted by the

3 MW transmitter offers no advantage for our purposes, since the PRF cannot

be increased becau.se of range ambiguity limitations.

2 .4 .2 Receiver Noise Figure Improvements

a. Low-noise Mixer and Pre-amplifier

According to the RCA catalog this mod kit reduces

the system noise figure from 11 dB to 8 dB. The resulting range improvement

factor is

R ( 8 d B ) = ( H d B - 8 d B ) 1 / 4 = 1 . 1 9 .dB)

b. Parametric Amplifier

This modification improves the receiver noise
*.'>
•v

figure to 4 dB and increases the range by a factor

«. 1.5.

2. 4. 3 Sixteen -Foot Diameter Antenna

The substitution of a 16' diameter reflector for the 12'

diameter reflector of the basic AN/FPS-16 is credited with providing 46 dB

See AD290-192 "Instrumentation Radar AN/FPS-16", prepared by
WSMR, Aug. 1962.
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or 47 dB gain, depending upon the source document. Treating both cases,

the range improvement factors due to the increases in gain are

a. 47 dB Antenna Gain

b. 46 dB Antenna Gain

.

An additional improvement is available due to the reduction

in beamwidth of the 16' antenna from 1.1 to 0. 8 . The angular error due to

thermal noise is further reduced by a factor

1.1°

of the value for the 12' dish.

2 .4 .4 Combinations of Modifications

In order for the basic AN/FPS-16 to be capable of tracking

aim reflecting sphere over the model balloon trajectory, its maximum range

capability must be augmented by a factor of at least

133.5 km _
84km ~ ]-58

It will be noted that none of the individual modifications described in 2.4. 1

through 2.4. 3 above provides sufficient improvement for the basic radar to

track the 1 m target. However, several combinations of the above modifi-

cations provide enough improvement to permit tracking the smaller target.

These are shown in Table 3 and plotted in curves B, C, and D of Figure 5.
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TABLE 3

Combined
Combination of ' Improvement Max. Range for
Modifications . Factor 1 m2 Target (km) '

16' Ant. (47 dB) + Low
_ - . _ . , . 1» D 7 JL .irr
Noise Mixer

16' Ant. (47 dB) +
3 MW Transmitter '

16' Ant. (46 dB) + Paramp 1.78 150

3 MW Transmitter + Paramp 1. 98 166

16' Ant. (47 dB) + Paramp 2.01 169

2. 4. 5 Digital Range Unit

A digital range unit, being completely electronic, • eliminates

the cyclical errors of the range resolver and some of the other problems

inherent in electro-mechanical components. Although it may not provide any

inherent improvement in accuracy over the analog range tracker, it requires

less effort to maintain and should, therefore, be more convenient and reliable

to use.

3. RECOMMENDED UTILIZATION OF RADAR-SPHERE TRAJECTORY
MEASUREMENT SYSTEM

3. 1 Sphere Selection

It is preferable to use the reflecting sphere rather than the sphere

with a corner reflector whenever this is possible because of the following

advantages:
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More uniform reflection with changes in aspect angle

(less scintillation due to sphere rotation and movement).

Mechanically simpler, easier to deploy, more reliable,

and potentially less expensive.

Less vulnerable to degradation aerodynamically and in

reflection characteristics as outside pressure increases,

since skin does not have to support reflector at 6 discrete

points.

The corner reflector sphere (ROBIN) should, therefore, be

resorted to only when inadequate S/N is available from the radar-reflecting

sphere combination. As shown in Figure 5, this is true for the model balloon

trajectory tracked by the Basic AN/FPS-16 alone or with only one of the radar

modifications listed in 2.4 above.

However, if any of the combinations of modifications listed in

Table 3 and shown in Figure 5 curves B,C, and D are available, it should be

possible to track the simple 1 m reflecting sphere accurately.

3. 2 Console Radar Settings

It was shown in 2. 3 above that the following choice of radar

parameters permits accurate tracking of the model balloon trajectory at 0. 1

second observation time, without degradation of accuracy due to thermal
*

noise or dynamic lags.

Pulse Width - 1

PRF - 853

118



Servo Bandwidths - 5 Hz

Angle

Range

3. 3 Radar Modifications

Combinations of the 3 MW Transmitter, 16' Antenna, Low-Noise

Mixer, and Paramp Mod Kits permit the achievement of the radar range capa-

bilities shown in Figure 5 with a 1 mz sphere and without thermal noise de-

gradation of position accuracy. The 25 m corner reflector sphere can provide

adequate range performance with the basic radar alone, without any modifications.

As indicated in 2.4. 5 above, a digital range unit should be used,

if available.

3.4 Trajectory Location

It was shown in 2. 3. 2 that the orientation of the trajectory did

not affect the angular tracking performance because at the ranges shown the

angle rates are too low to introduce significant lag errors.

However, it was indicated in 2. 3. 3 that the position errors at

the target are greater due to angle errors than range errors at the radar to

target distances of Figure 1. Accordingly, it would be advantageous to locate

the trajectory with respect to the radar site so that the more accurate measure-

ment requirements are -handled by the range tracker.
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4. 0 CONCLUSIONS

This study has identified in a general way the choices to be made by

an occasional user of the AN/FPS-16 radar for Falling Sphere measurements

in order to minimize errors that are within his control.

It should be emphasized that reducing such errors to negligible values

in itself does not assure rated performance from the radar. The radar must

be carefully maintained, calibrated and tuned in order to keep the fixed,

target-dependent, instrumental errors within their advertised values. There,

is little that the occasional user can do to provide proper maintenance. He

may, however, call for certain performance checks on the radar, or auxiliary

data as part of his standard operating procedure to alert him when the radar

is below par du r ing a. run. Real-time recordings of tracking error signals

in 3 coordinates, for example, will enable him to correlate at a later time

questionable trajectory measurements with the radar's performance at that

moment.

Finally, there is the more sophisticated question of optimizing the

radar parameters to obtain the data in the best form for subsequent off-line

trajectory analysis. Some of the radar self-noise is not random, and hence

smoothing techniques designed to improve the data in the presence of white

noise may actually be counter-productive. The spectrum of the radar self-

noise can depend upon the individual adjustment of the servo systems components,

and hence may vary from radar to radar and from time to time. To do an

effective job of matching the radar real-time smoothing, the data processing
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non-real time smoothing, and the trajectory takes detailed attention to the

particular radar and its components and cannot be handled satisfactorily on

a generalized basis. If a particular radar should become available for detailed

measurement and analysis of its servo systems, it could be made the subject

of concentrated attention on the optimization of the radar-data processing

interface to achieve superior performance.
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ô

0
r

UJ

0

>>-

o
1

fO
y-i
O-

^̂-

o

o
t

UJ

*T

O

«v
o
1

UJ
-3-
O
^~

o
1

04

tT

*
C

o
1

o
•T>

o

r-
0

en i

*£>

trv
C^
a)

in

0

Jj
•ji
o

0
1

VJJ

O
m
iT<

O
1

O
<v

. o

01
f-i
0

o
1

UJ l

m ;

O

rvj
O
1

UJ ,
r~ i
v>
n

O i

o ;
0:

o:
l :

1

m .

i

<M :

r—
C* i

i
,i

n
CO '

!

i
iii.t
!
!

i
j
i
j

!

i

i

-o ' ,..
o ^

CO y
CO . f.-
LA r

tr» tr

o- r!

uj ! tt

O . v

0 0

0 C.
I . 1

UJ

t*\ ;*̂

•-* -O
rvj ~-

o ^:
l

iA .--
-J- ' f,
r- ' r-

•3* ' T-
t- r-

c ':
i

Ol r.
1 : 1

IJJ ' n-

<f i
irt - un

O - 0

oj ; rvi
O; '_•
1 • 1

tu ' vu
r^ : r
O 1 A
CO ' f.

O Ci
1 t

O -J

t** •>
rO

o i -:

o . •?
1

o. -^
1 . 1

<y» ! *f

m u-.
31 ' *3

c>« • />

o ; o
0 I J-
p- ' r-
CT-! tV>

i
r*t »
CO n>

i

V
124



in
"v-i

O

O
M

•d

o

o?-

C

UJ

O

o

o

c-

o

c*
fM
o
•̂

*
1 :

u.'

IM

l ;

.-€ '

o
1
o-

1

1
o

1

-•
~£ •

" \
•n-

j
1

r>
a

^

...

0

UJ

o
r--

o

o
1
Lll

s
o

1—
o

'0
1

UJ

(V

o

c
1

Ul

ft

&

<">

c-

VA
*-•

r*
1

0

1

o

ft

01

1

CP

IA

O
1

LU

OC

O

"l
UJ

1C

0

\A

0-r-

c

'o
i

u:

iC
0

C

1

"̂

~i
c

•o

1

1

.0

1—

!o

=
fVI

CO
rvj

O

CO

lA

O

LU

^

O

o
UJ

2
O

CQ

f-

o

UJ
C'

£
c

o
1

IU
-r

0

0
1

.*

o

•O:

•c :
i

o •

o

-J

i

1

t

o

UJ

00

CC

o

o
1

c
fM

0

•n

C-

c

i

c

1

r-

O

,•**
r-

o
I

•c

•c
7-
1

-

•O

O

t-4

i

ij

i
i1

t- . o
r- ' -.A

m • o

j

O i O
1 1 1

LU | LU

•f i •-<

O j 0
1

oj o
i ! i

UJ ' UJ

rvl : rvi

{SI ! LT\
O • -J
•6 0

O- j 0
r- i r-
O; O

1
<r\ -f
0 I O
i i

!_•_! 'JJ

O • 11

C- ' W\

m i -«

O i C

0 C
1 1

LU IU
CO 'f:

•J- -1-

0 • 0
1 1

C O*
c- c- .

O Ol
! ' i

o , o,
1 1

>. -f

> n
i | —

<f\ . O

m m

•O tA

ro O

j

i

1

o
r-

r~

LA

O
1

LLJ

cr>
r-

o
i

o
1

LU

5

0

0

LL>

C.

1
UJ

£
o
i

o

•f\

o

o

1

rv,
IA.

i
rvj

1

£

IA

O
1

LJJ

O

o
1

o
1

UJ

0
0

o

7
9

5
9

2

c

s
1

UI

O

o
1

'.U ;

I1 :

O-
1

:> ;

c •

-o -

Ci

o'

~

^ I

o-

;

fA

CO
CM

.A

O
1

UJ

^>

O

ro
0

CO

O

II-
f~
0

0
1

I
J-V

c-

-X- j

r- •

X 1

CI
1

n

i

i .

m«•
i

0

1

i

,

(A

O

IA

O
1

LU

2
o
1

!
•̂ J

JD
u-i

O

0
r-
o

c
t

LU
-0

o

c

o
1

p-

-o

1
•o

—
«£.'

"rl

o

I
-G

O

O
1

o •

tr\ ;

i

03

rsj

"

tn

o

u;

rg
O

O
1
b
i

UJ

r\j

°

•O

o

o
1

UJ.

C

O

o

i
1

v<\

1
1

"l '.

•!

i

o

i

i
i

i

: c

tA

1 U^

C
1

UJ

0

O
1

'JJ

O
QJ

•"•

^

r-
o
r-

o

i

IX
o<

c
t.

UJ

./*
x>

o
1 .

r-

rv

r-

-»

?

O

^

CM

IM

CD
O

O

IA

O
1

UJ

<

O
1

0
1

UJ

rg

rs

O

7
9

7
2

5

c.

•a
c
i

LU
rvl

0

O
1

7
UJ
o

5

rv.

—

t-

„,

1

*

^

0-

.

ra

o
IA

o
l

LU

3>

O
1

O
1
u:

O

1

r-

o

o
i
lu

O

6
i

S
j
i

o

0

(M

1

1

J1

7

0

0
CM

1

. i
i

r- i ro
r--" c

05 -O

IA . iA

i
0| 0
1 i •

LU ! UJ

•J j O'

fM f fM

O | O

^1 A
Ol C

LU ! LU

.-u : m

O 0
1 i 1

r- : r-
0: C

l
1A | >A
rjl c
1 1

Ui UJ
r~ - ^~
^-< ! rv.'
O ?•
m n

l .> i

O: •>
i : i

m . •-.

o ' -o

O- -3

A- i
> sO

->! o

i

o: —

c f-
1 1

1

_.• -.
-T -T 1

ro O

" 1

1

i

03

tA

O
t

LU

01

O-
rM

0
r

?

b
rM

?

lA

r—

o

o *
t

UJ
'J* ,
IA

o

o '
1 '.

JJ -3 t

i !
o
1 :

.•*"•> '

?.•

0 i
i

c- :

t

T

>

to

0-

tM

rv

I

,

:
'

'

o m

^: £
LA . lA

i

O O
1 . 1

LU i UJ

Ol 1-
o-! r-
rvj : <v

01 0
1 i 1

o • o
1 : 1

LU '• .

-O —

o o
1 1

r- r-

o o

r\ ; lA

l- i
:U UJ

C . O
1 ' 1

i T
LJJ LU

= J»

T i
^> A

•-. o

0 0

J- **.

r, m

1 1

•» r-

-T 0'

"j

;

r~ • LA
VA, lA

0 O

iL' Jj
r- ; -r

O 1 Oi ; i
0 0
1 ' 1

UJ LU

CNJ rvj
r~ - rvl

0 0

CO O

O- . t>

0 O

C ' 0
1 1

LU 'JJ
 :

C- J-. .
rvj ~-*\
O r--

C O
1 ' II

f\ "\
r- °i1 1 I
UJ UJ •

£ £:
C- o!

L JL\
r>\ c 1

T»- ?.':
0 Oj

r- -:> •

; j

1

c» TI :
if"" CT\

-o »r» .
l l '

O o

1
to o
rsi rM

i

•

n

IA

O
I

LU

O
(M

O
I

O
1

UJ

1
0
1

S
o

IA
C
1

U1

rvj
O

0
1

o
1

>

IT.

•r\;

A
r*

O

rv

IP
I

o

m

ro i

•A

^

in

o
i

f-

o
i

o
1

UJ

Ĉ
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