275 research outputs found

    Phase diagrams of a p-Wave superconductor inside a mesoscopic disc-shaped sample

    Full text link
    We study the finite-size and boundary effects on a time-reversal-symmetry breaking p-wave superconducting state in a mesoscopic disc geometry using Ginzburg-Landau theory. We show that, for a large parameter range, the system exhibits multiple phase transitions. The superconducting transition from the normal state can also be reentrant as a function of external magnetic field.Comment: Revised version published in Physical Review

    Some estimates of Wang-Yau quasilocal energy

    Full text link
    Given a spacelike 2-surface Σ\Sigma in a spacetime NN and a constant future timelike unit vector T0T_0 in R3,1\R^{3,1}, we derive upper and lower estimates of Wang-Yau quasilocal energy E(Σ,X,T0)E(\Sigma, X, T_0) for a given isometric embedding XX of Σ\Sigma into a flat 3-slice in R3,1\R^{3,1}. The quantity E(Σ,X,T0) E(\Sigma, X, T_0) itself depends on the choice of XX, however the infimum of E(Σ,X,T0) E(\Sigma, X, T_0) over T0 T_0 does not. In particular, when Σ\Sigma lies in a time symmetric 3-slice in NN and has nonnegative Brown-York quasilocal mass \mby(\Sigma), our estimates show that infT0E(Σ,X,T0)\inf\limits_{T_0}E(\Sigma, X, T_0) equals \mby (\Sigma). We also study the spatial limit of infT0E(Sr,Xr,T0) \inf\limits_{T_0}E(S_r,X_r,T_0), where SrS_r is a large coordinate sphere in a fixed end of an asymptotically flat initial data set (M,g,p)(M, g, p) and XrX_r is an isometric embeddings of SrS_r into R3R3,1\mathbb{R}^3 \subset \mathbb{R}^{3,1}. We show that if (M,g,p)(M, g, p) has future timelike ADM energy-momentum, then limrinfT0E(Sr,Xr,T0)\lim\limits_{r\to\infty}\inf\limits_{T_0}E(S_r,X_r,T_0) equals the ADM mass of (M,g,p)(M, g, p).Comment: 17 page

    A Computational Design Pipeline to Fabricate Sensing Network Physicalizations

    Full text link
    Interaction is critical for data analysis and sensemaking. However, designing interactive physicalizations is challenging as it requires cross-disciplinary knowledge in visualization, fabrication, and electronics. Interactive physicalizations are typically produced in an unstructured manner, resulting in unique solutions for a specific dataset, problem, or interaction that cannot be easily extended or adapted to new scenarios or future physicalizations. To mitigate these challenges, we introduce a computational design pipeline to 3D print network physicalizations with integrated sensing capabilities. Networks are ubiquitous, yet their complex geometry also requires significant engineering considerations to provide intuitive, effective interactions for exploration. Using our pipeline, designers can readily produce network physicalizations supporting selection-the most critical atomic operation for interaction-by touch through capacitive sensing and computational inference. Our computational design pipeline introduces a new design paradigm by concurrently considering the form and interactivity of a physicalization into one cohesive fabrication workflow. We evaluate our approach using (i) computational evaluations, (ii) three usage scenarios focusing on general visualization tasks, and (iii) expert interviews. The design paradigm introduced by our pipeline can lower barriers to physicalization research, creation, and adoption.Comment: 11 pages, 8 figures; to be published in Proceedings of IEEE VIS 202

    Bioprospecting metagenomics of decaying wood: mining for new glycoside hydrolases

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To efficiently deconstruct recalcitrant plant biomass to fermentable sugars in industrial processes, biocatalysts of higher performance and lower cost are required. The genetic diversity found in the metagenomes of natural microbial biomass decay communities may harbor such enzymes. Our goal was to discover and characterize new glycoside hydrolases (GHases) from microbial biomass decay communities, especially those from unknown or never previously cultivated microorganisms.</p> <p>Results</p> <p>From the metagenome sequences of an anaerobic microbial community actively decaying poplar biomass, we identified approximately 4,000 GHase homologs. Based on homology to GHase families/activities of interest and the quality of the sequences, candidates were selected for full-length cloning and subsequent expression. As an alternative strategy, a metagenome expression library was constructed and screened for GHase activities. These combined efforts resulted in the cloning of four novel GHases that could be successfully expressed in <it>Escherichia coli</it>. Further characterization showed that two enzymes showed significant activity on <it>p</it>-nitrophenyl-α-<smcaps>L</smcaps>-arabinofuranoside, one enzyme had significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-glucopyranoside, and one enzyme showed significant activity against <it>p</it>-nitrophenyl-β-<smcaps>D</smcaps>-xylopyranoside. Enzymes were also tested in the presence of ionic liquids.</p> <p>Conclusions</p> <p>Metagenomics provides a good resource for mining novel biomass degrading enzymes and for screening of cellulolytic enzyme activities. The four GHases that were cloned may have potential application for deconstruction of biomass pretreated with ionic liquids, as they remain active in the presence of up to 20% ionic liquid (except for 1-ethyl-3-methylimidazolium diethyl phosphate). Alternatively, ionic liquids might be used to immobilize or stabilize these enzymes for minimal solvent processing of biomass.</p

    FGF19 Regulates Cell Proliferation, Glucose and Bile Acid Metabolism via FGFR4-Dependent and Independent Pathways

    Get PDF
    Fibroblast growth factor 19 (FGF19) is a hormone-like protein that regulates carbohydrate, lipid and bile acid metabolism. At supra-physiological doses, FGF19 also increases hepatocyte proliferation and induces hepatocellular carcinogenesis in mice. Much of FGF19 activity is attributed to the activation of the liver enriched FGF Receptor 4 (FGFR4), although FGF19 can activate other FGFRs in vitro in the presence of the coreceptor βKlotho (KLB). In this report, we investigate the role of FGFR4 in mediating FGF19 activity by using Fgfr4 deficient mice as well as a variant of FGF19 protein (FGF19v) which is specifically impaired in activating FGFR4. Our results demonstrate that FGFR4 activation mediates the induction of hepatocyte proliferation and the suppression of bile acid biosynthesis by FGF19, but is not essential for FGF19 to improve glucose and lipid metabolism in high fat diet fed mice as well as in leptin-deficient ob/ob mice. Thus, FGF19 acts through multiple receptor pathways to elicit pleiotropic effects in regulating nutrient metabolism and cell proliferation

    Integrated scheduling of tasks and gynecologists to improve patient appointment scheduling:a case study

    Get PDF
    Like many hospital departments, the gynecology department of the Jeroen Bosch Hospital experienced difficulties with scheduling outpatient appointments at the medically preferred times. Despite the time invested in creating the schedule, the compliance of the achieved schedules with the preferences of gynecologists is low, and the number of scheduled outpatient clinic hours is unbalanced over the weeks. To overcome this unbalanced scheduling, we develop a scheduling methodology that, opposed to existing methods, simultaneously assigns task types and gynecologists to shifts. This enables us to (1) explore the complete solution space to obtain better schedules, and (2) take into account different specializations and working hours of the gynecologists. To this end, we first present a Mixed Integer Linear Programming (MIP) approach for this scheduling problem that has the objective to increase compliance of the soft constraints. Preliminary results achieved with this MIP model show the potential of the chosen approach and were the motivation to develop two heuristic approaches, which are better suited for practical purposes. Based on several realistic test instances, the scheduling approaches appear promising for the hospital to apply for gynecologist scheduling, as they improve patient access times, comply better with preferences of the gynecologists, significantly reduce the time spent on creating the schedules, and do not require MIP solvers

    Prognostic implications of residual disease tumor-infiltrating lymphocytes and residual cancer burden in triple-negative breast cancer patients after neoadjuvant chemotherapy

    Get PDF
    Abstract Background For primary triple-negative breast cancer (TNBC) treated with neoadjuvant chemotherapy (NAC), higher pretreatment tumor-infiltrating lymphocytes (TILs) correlates with increased pathologic complete response (pCR) rates, and improved survival. We evaluated the added prognostic value of residual disease (RD) TILs to residual cancer burden (RCB) in predicting survival post-NAC. Patients and methods We combined four TNBC NAC patient cohorts who did not achieve pCR. RD TILs were investigated for associations with recurrence-free survival (RFS), and overall survival (OS) using Cox models with stromal TILs as a continuous variable (per 10% increment). The likelihood ratio test was used to evaluate added prognostic value of RD TILs. Results A total of 375 RD TNBC samples were evaluable for TILs and RCB. The median age was 50 years, with 62% receiving anthracycline/taxane chemotherapy. The RCB class after NAC was 11%, 50%, and 39% for I, II, and III, respectively. The median RD TIL level was 20% (IQR 10–40). There was a positive correlation between RD TIL levels and CD8+ T-cell density (ρ = 0.41). TIL levels were significantly lower with increasing post-NAC tumor (P = 0.005), nodal stage (P = 0.032), but did not differ by RCB class (P = 0.84). Higher RD TILs were significantly associated with improved RFS (HR: 0.86; 95% CI 0.79–0.92; P  Conclusions TIL levels in TNBC RD are significantly associated with improved RFS and OS and add further prognostic information to RCB class, particularly in RCB class II
    corecore