12,557 research outputs found
Stellar granulation as seen in disk-integrated intensity. I. Simplified theoretical modeling
The solar granulation is known for a long time to be a surface manifestation
of convection. Thanks to the current space-borne missions CoRoT and Kepler, it
is now possible to observe in disk-integrated intensity the signature of this
phenomena in a growing number of stars. The space-based photometric
measurements show that the global brightness fluctuations and the lifetime
associated with granulation obeys characteristic scaling relations. We thus aim
at providing a simple theoretical modeling to reproduce these scaling relations
and subsequently at inferring the physical properties of granulation properties
across the HR diagram.
We develop a simple 1D theoretical model that enable us to test any
prescription concerning the time-correlation between granules. The input
parameters of the model are extracted from 3D hydrodynamical models of the
surface layers of stars, and the free parameters involved in the model are
calibrated with solar observations. Two different prescriptions for
representing the eddy time-correlation in the Fourier space are compared: a
Lorentzian and an exponential form. Finally, we compare our theoretical
prediction with a 3D radiative hydrodynamical (RHD) numerical modeling of
stellar granulation (ab-initio approach). Provided that the free parameters are
appropriately adjusted, our theoretical model satisfactorily reproduces the
shape and the amplitude of the observed solar granulation spectrum. The best
agreement is obtained with an exponential form. Furthermore, our theoretical
model results in granulation spectra that consistently agree with the these
calculated on the basis of the ab-initio approach with two 3D RHD models.
Comparison between theoretical granulation spectra calculated with the present
model and high precision photometry measurements of stellar granulation is
undertaken in a companion paper.Comment: 10 pages, 2 figures, accepted for publication in A&
The Uniqueness Problem of Sequence Product on Operator Effect Algebra
A quantum effect is an operator on a complex Hilbert space that satisfies
. We denote the set of all quantum effects by . In
this paper we prove, Theorem 4.3, on the theory of sequential product on which shows, in fact, that there are sequential products on which are not of the generalized L\"{u}ders form. This result answers a
Gudder's open problem negatively
The effects of numerical resolution on hydrodynamical surface convection simulations and spectral line formation
The computationally demanding nature of radiative-hydrodynamical simulations
of stellar surface convection warrants an investigation of the sensitivity of
the convective structure and spectral synthesis to the numerical resolution and
dimension of the simulations, which is presented here. With too coarse a
resolution the predicted spectral lines tend to be too narrow, reflecting
insufficient Doppler broadening from the convective motions, while at the
currently highest affordable resolution the line shapes have converged
essentially perfectly to the observed profiles. Similar conclusions are drawn
from the line asymmetries and shifts. In terms of abundances, weak FeI and FeII
lines show a very small dependence (~0.02 dex) while for intermediate strong
lines with significant non-thermal broadening the sensitivity increases (~0.10
dex). Problems arise when using 2D convection simulations to describe an
inherent 3D phenomenon, which translates to inaccurate atmospheric velocity
fields and temperature and pressure structures. In 2D the theoretical line
profiles tend to be too shallow and broad compared with the 3D calculations and
observations, in particular for intermediate strong lines. In terms of
abundances, the 2D results are systematically about 0.1 dex lower than for the
3D case for FeI lines. Furthermore, the predicted line asymmetries and shifts
are much inferior in 2D. Given these shortcomings and computing time
considerations it is better to use 3D simulations of even modest resolution
than high-resolution 2D simulations.Comment: Accepted for A&
Is the Sun Lighter than the Earth? Isotopic CO in the Photosphere, Viewed through the Lens of 3D Spectrum Synthesis
We consider the formation of solar infrared (2-6 micron) rovibrational bands
of carbon monoxide (CO) in CO5BOLD 3D convection models, with the aim to refine
abundances of the heavy isotopes of carbon (13C) and oxygen (18O,17O), to
compare with direct capture measurements of solar wind light ions by the
Genesis Discovery Mission. We find that previous, mainly 1D, analyses were
systematically biased toward lower isotopic ratios (e.g., R23= 12C/13C),
suggesting an isotopically "heavy" Sun contrary to accepted fractionation
processes thought to have operated in the primitive solar nebula. The new 3D
ratios for 13C and 18O are: R23= 91.4 +/- 1.3 (Rsun= 89.2); and R68= 511 +/- 10
(Rsun= 499), where the uncertainties are 1 sigma and "optimistic." We also
obtained R67= 2738 +/- 118 (Rsun= 2632), but we caution that the observed
12C17O features are extremely weak. The new solar ratios for the oxygen
isotopes fall between the terrestrial values and those reported by Genesis
(R68= 530, R6= 2798), although including both within 2 sigma error flags, and
go in the direction favoring recent theories for the oxygen isotope composition
of Ca-Al inclusions (CAI) in primitive meteorites. While not a major focus of
this work, we derive an oxygen abundance of 603 +/- 9 ppm (relative to
hydrogen; 8.78 on the logarithmic H= 12 scale). That the Sun likely is lighter
than the Earth, isotopically speaking, removes the necessity to invoke exotic
fractionation processes during the early construction of the inner solar
system
A simulation of solar convection at supergranulation scale
We present here numerical simulations of surface solar convection which cover
a box of 303.2 Mm with a resolution of
31582, which is used to investigate the dynamics of scales
larger than granulation. No structure resembling supergranulation is present;
possibly higher Reynolds numbers (i.e. higher numerical resolution), or
magnetic fields, or greater depth are necessary. The results also show
interesting aspects of granular dynamics which are briefly presented, like
extensive p-mode ridges in the k- diagram and a ringlike distribution
of horizontal vorticity around granules. At large scales, the horizontal
velocity is much larger than the vertical velocity and the vertical motion is
dominated by p-mode oscillations.Comment: Contribution to the proceedings of the workshop entitled "THEMIS and
the new frontiers of solar atmosphere dynamics" (March 2001), 6 pages, to
appear in Nuovo Cimento
Spiral-grooved shaft seals substantially reduce leakage and wear
Rotating shaft seals used in space power systems have spiral grooves in one or both of the opposing seal faces. These grooves induce a pumping action which displaces the intervening fluid radially inward toward the shaft and counters the centrifugal forces which tend to displace the fluid outward
6Li detection in metal-poor stars: can 3D model atmospheres solve the second lithium problem?
The presence of 6Li in the atmospheres of metal-poor halo stars is usually
inferred from the detection of a subtle extra depression in the red wing of the
7Li doublet line at 670.8 nm. However, the intrinsic line asymmetry caused by
convective flows in the photospheres of cool stars is almost indistinguishable
from the asymmetry produced by a weak 6Li blend on a (presumed) symmetric 7Li
profile. Previous determinations of the 6Li/ 7Li isotopic ratio based on 1D
model atmospheres, ignoring the convection-induced line asymmetry, must
therefore be considered as upper limits. By comparing synthetic 1D LTE and 3D
non-LTE line profiles of the Li 670.8 nm feature, we quantify the differential
effect of the convective line asymmetry on the derived 6Li abundance as a
function of effective temperature, gravity, and metallicity. As expected, we
find that the asymmetry effect systematically reduces the resulting 6Li/7Li
ratios. Depending on the stellar parameters, the 3D-1D offset in 6Li/7Li ranges
between -0.005 and -0.020. When this purely theoretical correction is taken
into account for the Asplund 2006 sample of stars, the number of significant
6Li detections decreases from 9 to 5 (2 sigma criterion), or from 5 to 2 (3
sigma criterion).
We also present preliminary results of a re-analysis of high-resolution, high
S/N spectra of individual metal-poor turn-off stars, to see whether the "second
Lithium problem" actually disappears when accounting properly for convection
and non-LTE line formation in 3D stellar atmospheres. Out of 8 stars, HD84937
seems to be the only significant (2 sigma) detection of 6Li. In view of our
results, the existence of a 6Li plateau appears questionable.Comment: To appear in the proceedings of 'Lithium in the Cosmos', Paris, Feb.
27-29, 2012, Memorie della Societa' Astronomica Italiana Supplement
(Conformal) Killing vectors and their associated bivectors
Fayos and Sopuerta have recently set up a formalism for studying vacuum
spacetimes with an isometry, a formalism that is centred around the bivector
corresponding to the Killing vector and that adapts the tetrad to the bivector.
Steele has generalized their approach to include the homothetic case. Here, we
generalize this formalism to arbitrary spacetimes and to homothetic and
conformal Killing vectors but do not insist on aligning the tetrad with the
bivector. The most efficient way to use the formalism to find conformal Killing
vectors (proper or not) of a given spacetime is to combine it with the notion
of a preferred tetrad. A metric by Kimura is used as an illustrative example
Surface-effect corrections for solar-like oscillations using 3D hydrodynamical simulations
The space-borne missions have provided us with a wealth of high-quality
observational data that allows for seismic inferences of stellar interiors.
This requires the computation of precise and accurate theoretical frequencies,
but imperfect modeling of the uppermost stellar layers introduces systematic
errors. To overcome this problem, an empirical correction has been introduced
by Kjeldsen et al. (2008, ApJ, 683, L175) and is now commonly used for seismic
inferences. Nevertheless, we still lack a physical justification allowing for
the quantification of the surface-effect corrections. We used a grid of these
simulations computed with the COBOLD code to model the outer layers of
solar-like stars. Upper layers of the corresponding 1D standard models were
then replaced by the layers obtained from the horizontally averaged 3D models.
The frequency differences between these patched models and the 1D standard
models were then calculated using the adiabatic approximation and allowed us to
constrain the Kjeldsen et al. power law, as well as a Lorentzian formulation.
We find that the surface effects on modal frequencies depend significantly on
both the effective temperature and the surface gravity. We further provide the
variation in the parameters related to the surface-effect corrections using
their power law as well as a Lorentzian formulation. Scaling relations between
these parameters and the elevation (related to the Mach number) is also
provided. The Lorentzian formulation is shown to be more robust for the whole
frequency spectrum, while the power law is not suitable for the frequency
shifts in the frequency range above .Comment: 11 pages, 14 figures, 4 tables; accepted for publication in Astronomy
& Astrophysic
- …