18,366 research outputs found
The role of slip transfer at grain boundaries in the propagation of microstructurally short fatigue cracks in Ni-based superalloys
Crack initiation and propagation under high-cycle fatigue conditions have
been investigated for a polycrystalline Ni-based superalloy by in-situ
synchrotron assisted diffraction and phase contrast tomography. The cracks
nucleated along the longest coherent twin boundaries pre-existing on the
specimen surface, that were well oriented for slip and that presented a large
elastic incompatibility across them. Moreover, the propagation of
microstructurally short cracks was found to be determined by the easy slip
transfer paths across the pre-existing grain boundaries. This information can
only be obtained by characterization techniques like the ones presented here
that provide the full set of 3D microstructural information
Lissajous curves and semiclassical theory: The two-dimensional harmonic oscillator
The semiclassical treatment of the two-dimensional harmonic oscillator
provides an instructive example of the relation between classical motion and
the quantum mechanical energy spectrum. We extend previous work on the
anisotropic oscillator with incommensurate frequencies and the isotropic
oscillator to the case with commensurate frequencies for which the Lissajous
curves appear as classical periodic orbits. Because of the three different
scenarios depending on the ratio of its frequencies, the two-dimensional
harmonic oscillator offers a unique way to explicitly analyze the role of
symmetries in classical and quantum mechanics.Comment: 9 pages, 3 figures; to appear in Am. J. Phy
Activated escape of periodically modulated systems
The rate of noise-induced escape from a metastable state of a periodically
modulated overdamped system is found for an arbitrary modulation amplitude .
The instantaneous escape rate displays peaks that vary with the modulation from
Gaussian to strongly asymmetric. The prefactor in the period-averaged
escape rate depends on nonmonotonically. Near the bifurcation amplitude
it scales as . We identify three scaling
regimes, with , and 1/2
3D Model Atmospheres for Extremely Low-Mass White Dwarfs
We present an extended grid of mean three-dimensional (3D) spectra for
low-mass, pure-hydrogen atmosphere DA white dwarfs (WDs). We use CO5BOLD
radiation-hydrodynamics 3D simulations covering Teff = 6000-11,500 K and logg =
5-6.5 (cgs units) to derive analytical functions to convert spectroscopically
determined 1D temperatures and surface gravities to 3D atmospheric parameters.
Along with the previously published 3D models, the 1D to 3D corrections are now
available for essentially all known convective DA WDs (i.e., logg = 5-9). For
low-mass WDs, the correction in temperature is relatively small (a few per cent
at the most), but the surface gravities measured from the 3D models are lower
by as much as 0.35 dex. We revisit the spectroscopic analysis of the extremely
low-mass (ELM) WDs, and demonstrate that the 3D models largely resolve the
discrepancies seen in the radius and mass measurements for relatively cool ELM
WDs in eclipsing double WD and WD + milli-second pulsar binary systems. We also
use the 3D corrections to revise the boundaries of the ZZ Ceti instability
strip, including the recently found ELM pulsators.Comment: 11 pages, 8 figures, accepted for publication in the Astrophysical
Journa
An in-depth spectroscopic examination of molecular bands from 3D hydrodynamical model atmospheres I. Formation of the G-band in metal-poor dwarf stars
Recent developments in the three-dimensional (3D) spectral synthesis code
Linfor3D have meant that, for the first time, large spectral wavelength
regions, such as molecular bands, can be synthesised with it in a short amount
of time. A detailed spectral analysis of the synthetic G-band for several dwarf
turn-off-type 3D atmospheres (5850 <= T_eff [K] <= 6550, 4.0 <= log g <= 4.5,
-3.0 <= [Fe/H] <= -1.0) was conducted, under the assumption of local
thermodynamic equilibrium. We also examine carbon and oxygen molecule formation
at various metallicity regimes and discuss the impact it has on the G-band.
Using a qualitative approach, we describe the different behaviours between the
3D atmospheres and the traditional one-dimensional (1D) atmospheres and how the
different physics involved inevitably leads to abundance corrections, which
differ over varying metallicities. Spectra computed in 1D were fit to every 3D
spectrum to determine the 3D abundance correction. Early analysis revealed that
the CH molecules that make up the G-band exhibited an oxygen abundance
dependency; a higher oxygen abundance leads to weaker CH features. Nitrogen
abundances showed zero impact to CH formation. The 3D corrections are also
stronger at lower metallicity. Analysis of the 3D corrections to the G-band
allows us to assign estimations of the 3D abundance correction to most dwarf
stars presented in the literature. The 3D corrections suggest that A(C) in CEMP
stars with high A(C) would remain unchanged, but would decrease in CEMP stars
with lower A(C). It was found that the C/O ratio is an important parameter to
the G-band in 3D. Additional testing confirmed that the C/O ratio is an equally
important parameter for OH transitions under 3D. This presents a clear
interrelation between the carbon and oxygen abundances in 3D atmospheres
through their molecular species, which is not seen in 1D.Comment: 19 pages, 13 figures, 4 tables. Accepted for publication in A&
Intrinsically Legal-For-Trade Objects by Digital Signatures
The established techniques for legal-for-trade registration of weight values
meet the legal requirements, but in praxis they show serious disadvantages. We
report on the first implementation of intrinsically legal-for-trade objects,
namely weight values signed by the scale, that is accepted by the approval
authority. The strict requirements from both the approval- and the
verification-authority as well as the limitations due to the hardware of the
scale were a special challenge. The presented solution fulfills all legal
requirements and eliminates the existing practical disadvantages.Comment: 4 pages, 0 figure
Assessing digital preservation frameworks: the approach of the SHAMAN project
How can we deliver infrastructure capable of supporting the
preservation of digital objects, as well as the services that can be applied to those digital objects, in ways that future unknown systems will understand? A critical problem in developing systems is the process of validating whether the delivered solution effectively reflects the validated requirements. This is a challenge also for the EU-funded SHAMAN project, which aims to develop an integrated preservation framework using grid-technologies for distributed networks of digital preservation systems, for managing the storage, access, presentation, and manipulation of digital objects over time. Recognising this, the project team ensured that alongside the user requirements an assessment framework was developed. This paper presents the assessment of the SHAMAN demonstrators for the memory institution, industrial design and engineering and eScience domains, from the point of view of
user’s needs and fitness for purpose. An innovative synergistic use of TRAC criteria, DRAMBORA risk registry and mitigation strategies, iRODS rules and information system models requirements has been designed, with the underlying goal to define associated policies, rules and state information, and make them wherever possible machine-encodable and enforceable. The described assessment framework can be valuable not only for the implementers of this project preservation framework, but for the wider digital preservation community, because it provides a
holistic approach to assessing and validating the preservation of digital libraries, digital repositories and data centres
The Three-Nucleon System Near the N-d Threshold
The three-nucleon system is studied at energies a few hundred keV above the
N-d threshold. Measurements of the tensor analyzing powers and
for p-d elastic scattering at keV are presented
together with the corresponding theoretical predictions. The calculations are
extended to very low energies since they are useful for extracting the p-d
scattering lengths from the experimental data. The interaction considered here
is the Argonne V18 potential plus the Urbana three-nucleon potential. The
calculation of the asymptotic D- to S-state ratio for H and He, for
which recent experimental results are available, is also presented.Comment: Latex, 11 pages, 2 figures, to be published in Phy.Lett.
- …