170 research outputs found

    Measurements of linewidth variations within external-cavitymodes of a gratingcavity laser

    Get PDF
    Abstract Linewidth variations within an external-cavity mode of a grating-cavity laser were measured with high accuracy using the self-homodyne technique with a short delay line. To our knowledge, this is the first time that these variations have been accurately measured. In our laser, we observed the linewidth to change by a factor of five from 30 kHz to more than 150 kHz when the laser was tuned over a single external-cavity mode. A simple model based on a linear relationship between the chirp reduction factor and the frequency tuning of the laser is used to describe the results.

    Positive Mass Theorem for Black Holes in Einstein-Maxwell Axion-dilaton Gravity

    Full text link
    We presented the proof of the positive mass theorem for black holes in Einstein-Maxwell axion-dilaton gravity being the low-energy limit of the heterotic string theory. We show that the total mass of a spacetime containing a black hole is greater or equal to the square root of the sum of squares of the adequate dilaton-electric and dilaton-axion charges.Comment: latex file, to appear in Classical Quantum Gravit

    Analysis of the linewidth of a grating-feedback GaAlAs laser

    Full text link

    Quasi-Local Gravitational Energy

    Full text link
    A dynamically preferred quasi-local definition of gravitational energy is given in terms of the Hamiltonian of a `2+2' formulation of general relativity. The energy is well-defined for any compact orientable spatial 2-surface, and depends on the fundamental forms only. The energy is zero for any surface in flat spacetime, and reduces to the Hawking mass in the absence of shear and twist. For asymptotically flat spacetimes, the energy tends to the Bondi mass at null infinity and the \ADM mass at spatial infinity, taking the limit along a foliation parametrised by area radius. The energy is calculated for the Schwarzschild, Reissner-Nordstr\"om and Robertson-Walker solutions, and for plane waves and colliding plane waves. Energy inequalities are discussed, and for static black holes the irreducible mass is obtained on the horizon. Criteria for an adequate definition of quasi-local energy are discussed.Comment: 16 page

    How children eat may contribute to rising levels of obesity children's eating behaviours: An intergenerational study of family influences

    Get PDF
    The term ‘obesogenic environment’ is rapidly becoming part of common phraseology. However, the influence of the family and the home environment on children's eating behaviours is little understood. Research that explores the impact of this micro environment and intergenerational influences affecting children's eating behaviours is long overdue. A qualitative, grounded theory approach, incorporating focus groups and semi-structured interviews, was used to investigate the family environment and specifically, the food culture of different generations within families. What emerged was a substantive theory based on ‘ordering of eating’ that explains differences in eating behaviours within and between families. Whereas at one time family eating was highly ordered and structured, typified by the grandparent generation, nowadays family eating behaviours are more haphazard and less ordered, evidenced by the way the current generation of children eat. Most importantly, in families with an obese child eating is less ordered compared with those families with a normal weight child. Ordering of eating' is a unique concept to emerge. It shows that an understanding of the eating process is crucial to the development and improvement of interventions targeted at addressing childhood obesity within the family context

    Lagrangian and Hamiltonian for the Bondi-Sachs metrics

    Full text link
    We calculate the Hilbert action for the Bondi-Sachs metrics. It yields the Einstein vacuum equations in a closed form. Following the Dirac approach to constrained systems we investigate the related Hamiltonian formulation.Comment: 8 page

    The fate of the homoctenids (Tentaculitoidea) during the Frasnian-Famennian mass extinction (Late Devonian)

    Get PDF
    The homoctenids (Tentaculitoidea) are small, conical-shelled marine animals which are amongst the most abundant and widespread of all Late Devonian fossils. They were a principal casualty of the Frasnian-Famennian (F-F, Late Devonian) mass extinction, and thus provide an insight into the extinction dynamics. Despite their abundance during the Late Devonian, they have been largely neglected by extinction studies. A number of Frasnian-Famennian boundary sections have been studied, in Poland, Germany, France, and the United States. These sections have yielded homoctenids, which allow precise recognition of the timing of the mass extinction. It is clear that the homoctenids almost disappear from the fossil record during the latest Frasnian “Upper Kellwasser Event”. The coincident extinction of this pelagic group, and the widespread development of intense marine anoxia within the water column, provides a causal link between anoxia and the F-F extinction. Most notable is the sudden demise of a group, which had been present in rock-forming densities, during this anoxic event. One new species, belonging to Homoctenus is described, but is not formally named here

    Trapped surfaces and symmetries

    Full text link
    We prove that strictly stationary spacetimes cannot contain closed trapped nor marginally trapped surfaces. The result is purely geometric and holds in arbitrary dimension. Other results concerning the interplay between (generalized) symmetries and trapped submanifolds are also presented.Comment: 9 pages, no figures. Final corrected version to appear in Class. Quantum Gra

    On Global Conservation Laws at Null Infinity

    Get PDF
    The ``standard'' expressions for total energy, linear momentum and also angular momentum of asymptotically flat Bondi metrics at null infinity are also obtained from differential conservation laws on asymptotically flat backgrounds, derived from a quadratic Lagrangian density by methods currently used in classical field theory. It is thus a matter of taste and commodity to use or not to use a reference spacetime in defining these globally conserved quantities. Backgrounds lead to N\oe ther conserved currents; the use of backgrounds is in line with classical views on conservation laws. Moreover, the conserved quantities are in principle explicitly related to the sources of gravity through Einstein's equations, while standard definitions are not. The relations depend, however, on a rule for mapping spacetimes on backgrounds

    Holography in asymptotically flat space-times and the BMS group

    Full text link
    In a previous paper (hep-th/0306142) we have started to explore the holographic principle in the case of asymptotically flat space-times and analyzed in particular different aspects of the Bondi-Metzner-Sachs (BMS) group, namely the asymptotic symmetry group of any asymptotically flat space-time. We continue this investigation in this paper. Having in mind a S-matrix approach with future and past null infinity playing the role of holographic screens on which the BMS group acts, we connect the IR sectors of the gravitational field with the representation theory of the BMS group. We analyze the (complicated) mapping between bulk and boundary symmetries pointing out differences with respect to the AdS/CFT set up. Finally we construct a BMS phase space and a free hamiltonian for fields transforming w.r.t BMS representations. The last step is supposed to be an explorative investigation of the boundary data living on the degenerate null manifold at infinity.Comment: 31 pages, several changes in section 3 and 7 and references update
    • 

    corecore