82 research outputs found
Mosquito larval habitat ecology in the cold arid Patagonia region of Argentina
Fil: Grech, M.G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Epele, L. B. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Manzo, L. M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Claverie, A. Ñ. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Laurito, M. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Laurito, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Almirón, W. R. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Almirón, W. R. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Miserendino, M. L. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Ludueña-Almeida, F. F. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Ludueña-Almeida, F. F. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Knowledge of mosquito ecology in the southern Argentine Patagonia region
remains restricted mainly to geographic distributions and some habitat descriptions. There
has been no comprehensive study of the ecology of larvae in this region.http://entsoc.org/PDF/2015/2015_ESA_Annual_Meeting_Program.pdfFil: Grech, M.G. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Epele, L. B. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Manzo, L. M. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Claverie, A. Ñ. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Laurito, M. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Laurito, M. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Almirón, W. R. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Almirón, W. R. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Fil: Miserendino, M. L. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas. Laboratorio de Investigaciones en Ecología y Sistemática Animal; Argentina.Fil: Ludueña-Almeida, F. F. Centro de Investigaciones Entomológicas de Córdoba; Argentina.Fil: Ludueña-Almeida, F. F. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Investigaciones Biológicas y Tecnológicas; Argentina.Zoología, Ornitología, Entomología, Etologí
Cell cycle perturbations and apoptosis induced by isohomohalichondrin B (IHB), a natural marine compound
Isohomohalichondrin B (IHB), a novel marine compound with anti-tumoral activity, extracted from the Lissodendorix sponge, inhibits GTP binding to tubulin, preventing microtubule assembly. Cell cycle perturbations and apoptosis induced by IHB were investigated on selected human cancer cell lines by using flow cytometric and biochemical techniques. Monoparameter flow cytometric analysis showed that 1 h IHB exposure caused a delayed progression through S-phase, a dramatic block in G2M phase of the cell cycle and the appearance of tetraploid cell population in LoVo, LoVo/DX, MOLT-4 and K562 cells. At 24 h after IHB exposure, the majority of cells blocked in G2M were in prophase as assessed by morphological analysis and by the fact that they expressed high levels of cyclin A/cdc2 and cyclin B1/cdc2. At 48 h, all cells were tetraploid as assessed by biparameter cyclin A/DNA and cyclin B1/DNA content analysis. Apoptotic death was detected in both leukaemic MOLT-4 and K562 cells, which express wild-type and mutated p53 respectively, when the cells were blocked in mitotic prophase. In conclusion, IHB is a novel potent anti-tumour drug that causes delayed S-phase progression, mitotic block, tetraploidy and apoptosis in cancer cell lines. © 1999 Cancer Research Campaig
Cytoskeletal Signaling: Is Memory Encoded in Microtubule Lattices by CaMKII Phosphorylation?
Memory is attributed to strengthened synaptic connections among particular brain neurons, yet synaptic membrane components are transient, whereas memories can endure. This suggests synaptic information is encoded and ‘hard-wired’ elsewhere, e.g. at molecular levels within the post-synaptic neuron. In long-term potentiation (LTP), a cellular and molecular model for memory, post-synaptic calcium ion (Ca2+) flux activates the hexagonal Ca2+-calmodulin dependent kinase II (CaMKII), a dodacameric holoenzyme containing 2 hexagonal sets of 6 kinase domains. Each kinase domain can either phosphorylate substrate proteins, or not (i.e. encoding one bit). Thus each set of extended CaMKII kinases can potentially encode synaptic Ca2+ information via phosphorylation as ordered arrays of binary ‘bits’. Candidate sites for CaMKII phosphorylation-encoded molecular memory include microtubules (MTs), cylindrical organelles whose surfaces represent a regular lattice with a pattern of hexagonal polymers of the protein tubulin. Using molecular mechanics modeling and electrostatic profiling, we find that spatial dimensions and geometry of the extended CaMKII kinase domains precisely match those of MT hexagonal lattices. This suggests sets of six CaMKII kinase domains phosphorylate hexagonal MT lattice neighborhoods collectively, e.g. conveying synaptic information as ordered arrays of six “bits”, and thus “bytes”, with 64 to 5,281 possible bit states per CaMKII-MT byte. Signaling and encoding in MTs and other cytoskeletal structures offer rapid, robust solid-state information processing which may reflect a general code for MT-based memory and information processing within neurons and other eukaryotic cells
Approaches in biotechnological applications of natural polymers
Natural polymers, such as gums and mucilage, are biocompatible, cheap, easily available and non-toxic materials of native origin. These polymers are increasingly preferred over synthetic materials for industrial applications due to their intrinsic properties, as well as they are considered alternative sources of raw materials since they present characteristics of sustainability, biodegradability and biosafety. As definition, gums and mucilages are polysaccharides or complex carbohydrates consisting of one or more monosaccharides or their derivatives linked in bewildering variety of linkages and structures. Natural gums are considered polysaccharides naturally occurring in varieties of plant seeds and exudates, tree or shrub exudates, seaweed extracts, fungi, bacteria, and animal sources. Water-soluble gums, also known as hydrocolloids, are considered exudates and are pathological products; therefore, they do not form a part of cell wall. On the other hand, mucilages are part of cell and physiological products. It is important to highlight that gums represent the largest amounts of polymer materials derived from plants. Gums have enormously large and broad applications in both food and non-food industries, being commonly used as thickening, binding, emulsifying, suspending, stabilizing agents and matrices for drug release in pharmaceutical and cosmetic industries. In the food industry, their gelling properties and the ability to mold edible films and coatings are extensively studied. The use of gums depends on the intrinsic properties that they provide, often at costs below those of synthetic polymers. For upgrading the value of gums, they are being processed into various forms, including the most recent nanomaterials, for various biotechnological applications. Thus, the main natural polymers including galactomannans, cellulose, chitin, agar, carrageenan, alginate, cashew gum, pectin and starch, in addition to the current researches about them are reviewed in this article.. }To the Conselho Nacional de Desenvolvimento Cientfíico e Tecnológico (CNPq) for fellowships (LCBBC and MGCC) and the Coordenação de Aperfeiçoamento de Pessoal de Nvíel Superior (CAPES) (PBSA). This study was supported by the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit, the Project RECI/BBB-EBI/0179/2012 (FCOMP-01-0124-FEDER-027462) and COMPETE 2020 (POCI-01-0145-FEDER-006684) (JAT)
- …