52 research outputs found

    Similarity Analysis of Nonlinear Equations and Bases of Finite Wavelength Solitons

    Full text link
    We introduce a generalized similarity analysis which grants a qualitative description of the localised solutions of any nonlinear differential equation. This procedure provides relations between amplitude, width, and velocity of the solutions, and it is shown to be useful in analysing nonlinear structures like solitons, dublets, triplets, compact supported solitons and other patterns. We also introduce kink-antikink compact solutions for a nonlinear-nonlinear dispersion equation, and we construct a basis of finite wavelength functions having self-similar properties.Comment: 18 pages Latex, 6 figures ep

    Scaling analyses based on wavelet transforms for the Talbot effect

    Full text link
    The fractal properties of the transverse Talbot images are analysed with two well-known scaling methods, the wavelet transform modulus maxima (WTMM) and the wavelet transform multifractal detrended fluctuation analysis (WT-MFDFA). We use the widths of the singularity spectra, Delta alpha=alpha_H-alpha_min, as a characteristic feature of these Talbot images. The tau scaling exponents of the q moments are linear in q within the two methods, which proves the monofractality of the transverse diffractive paraxial field in the case of these imagesComment: 9 pages, 6 figures, version accepted at Physica

    Nonlinear Modes of Liquid Drops as Solitary Waves

    Get PDF
    The nolinear hydrodynamic equations of the surface of a liquid drop are shown to be directly connected to Korteweg de Vries (KdV, MKdV) systems, giving traveling solutions that are cnoidal waves. They generate multiscale patterns ranging from small harmonic oscillations (linearized model), to nonlinear oscillations, up through solitary waves. These non-axis-symmetric localized shapes are also described by a KdV Hamiltonian system. Recently such ``rotons'' were observed experimentally when the shape oscillations of a droplet became nonlinear. The results apply to drop-like systems from cluster formation to stellar models, including hyperdeformed nuclei and fission

    Wavelets and Quantum Algebras

    Get PDF
    Wavelets, known to be useful in non-linear multi-scale processes and in multi-resolution analysis, are shown to have a q-deformed algebraic structure. The translation and dilation operators of the theory associate with any scaling equation a non-linear, two parameter algebra. This structure can be mapped onto the quantum group suq(2)su_{q}(2) in one limit, and approaches a Fourier series generating algebra, in another limit. A duality between any scaling function and its corresponding non-linear algebra is obtained. Examples for the Haar and B-wavelets are worked out in detail.Comment: 27 pages Latex, 3 figure p

    A New Nonlinear Liquid Drop Model. Clusters as Solitons on The Nuclear Surface

    Full text link
    By introducing in the hydrodynamic model, i.e. in the hydrodynamic equations and the corresponding boundary conditions, the higher order terms in the deviation of the shape, we obtain in the second order the Korteweg de Vries equation (KdV). The same equation is obtained by introducing in the liquid drop model (LDM), i.e. in the kinetic, surface and Coulomb terms, the higher terms in the second order. The KdV equation has the cnoidal waves as steady-state solutions. These waves could describe the small anharmonic vibrations of spherical nuclei up to the solitary waves. The solitons could describe the preformation of clusters on the nuclear surface. We apply this nonlinear liquid drop model to the alpha formation in heavy nuclei. We find an additional minimum in the total energy of such systems, corresponding to the solitons as clusters on the nuclear surface. By introducing the shell effects we choose this minimum to be degenerated with the ground state. The spectroscopic factor is given by the ratio of the square amplitudes in the two minima.Comment: 27 pages, LateX, 8 figures, Submitted J. Phys. G: Nucl. Part. Phys., PACS: 23.60.+e, 21.60.Gx, 24.30.-v, 25.70.e

    Generalized KdV Equation for Fluid Dynamics and Quantum Algebras

    Full text link
    We generalize the non-linear one-dimensional equation of a fluid layer for any depth and length as an infinite order differential equation for the steady waves. This equation can be written as a q-differential one, with its general solution written as a power series expansion with coefficients satisfying a nonlinear recurrence relation. In the limit of long and shallow water (shallow channels) we reobtain the well known Korteweg-de-Vries equation together with its single-soliton solution.Comment: 17 pages, Latex, PACS: 47.20.Ky, 43.25.Rq, 47.35.+i, 03.40.Kf, 43.25.Fe, 02.20.Tw, MSC: 16W30, 17B37, 81R50, 35Q51, 34B15, 34L30, 76E3

    Analysis and classification of nonlinear dispersive evolution equations in the potential representation

    Get PDF
    A potential representation for the subset of travelling solutions of nonlinear dispersive evolution equations is introduced. The procedure involves reduction of a third-order partial differential equation to a first-order ordinary differential equation. The potential representation allows us to deduce certain properties of the solutions without the actual need to solve the underlying evolution equation. In particular, the paper deals with the so-called K(n, m) equations. Starting from their respective potential representations it is shown that these equations can be classified according to a simple point transformation. As a result, e.g., all equations with linear dispersion join the same equivalence class with the Korteweg-deVries equation being its representative, and all soliton solutions of higher order nonlinear equations are thus equivalent to the KdV soliton. Certain equations with both linear and quadratic dispersions can also be treated within this equivalence class
    • …
    corecore