39 research outputs found

    Increasing Temperature and Microplastic Fibers Jointly Influence Soil Aggregation by Saprobic Fungi

    Get PDF
    Microplastic pollution and increasing temperature have potential to influence soil quality; yet little is known about their effects on soil aggregation, a key determinant of soil quality. Given the importance of fungi for soil aggregation, we investigated the impacts of increasing temperature and microplastic fibers on aggregation by carrying out a soil incubation experiment in which we inoculated soil individually with 5 specific strains of soil saprobic fungi. Our treatments were temperature (ambient temperature of 25°C or temperature increased by 3°C, abruptly versus gradually) and microplastic fibers (control and 0.4% w/w). We evaluated the percentage of water stable aggregates (WSA) and hydrolysis of fluorescein diacetate (FDA) as an indicator of fungal biomass. Microplastic fiber addition was the main factor influencing the WSA, decreasing the percentage of WSA except in soil incubated with strain RLCS 01, and mitigated the effects of temperature or even caused more pronounced decrease in WSA under increasing temperature. We also observed clear differences between temperature change patterns. Our study shows that the interactive effects of warming and microplastic fibers are important to consider when evaluating effects of global change on soil aggregation and potentially other soil processes

    Sickle cell patients are characterized by a reduced glycocalyx volume

    Get PDF
    The glycocalyx is an important anti-inflammatory and anti-adhesive barrier at the luminal side of endothelial cells. Glycocalyx volume was significantly reduced in sickle cell patients (HbSS/HbSβ0-thalassemia median 0.47L, IQR 0.27-0.66, HbSC/HbSβ+-thalassemia 0.23L, 0.0-0.58) compared with controls (1×109L, 0.52-1.77) (p=0.03). Reduced glycocalyx may be a new factor in the pathophysiology of sickle cell disease

    Soil Saprobic Fungi Differ in Their Response to Gradually and Abruptly Delivered Copper

    Get PDF
    The overwhelming majority of studies examining environmental change deliver treatments abruptly, although, in fact, many important changes are gradual. One example of a gradually increasing environmental stressor is heavy metal contamination. Essential heavy metals, such as copper, play an important role within cells of living organisms but are toxic at higher concentrations. In our study, we focus on the effects of copper pollution on filamentous soil fungi, key players in terrestrial ecosystem functioning. We hypothesize that fungi exposed to gradually increasing copper concentrations have higher chances for physiological acclimation and will maintain biomass production and accumulate less copper, compared to fungi abruptly exposed to the highest copper concentration. To test this hypothesis, we conducted an experiment with 17 fungal isolates exposed to gradual and abrupt copper addition. Contrary to our hypothesis, we find diverse idiosyncratic responses, such that for many fungi gradually increasing copper concentrations have more severe effects (stronger growth inhibition and higher copper accumulation) than an abrupt increase. While a number of environmental change studies have accumulated evidence based on the magnitude of changes, the results of our study imply that the rate of change can be an important factor to consider in future studies in ecology, environmental science, and environmental management

    DNA Probe-Mediated Detection of Resistant Bacteria from Soils Highly Polluted by Heavy Metals

    No full text
    Alcaligenes eutrophus CH34 DNA fragments encoding resistance to Cd(2+), Co(2+), Zn(2+) (czc), or Hg(2+) (merA) were cloned and used as probes in colony hybridization procedures with bacteria isolated from polluted environments such as a zinc factory area (desertified because of the toxic effects of zinc contamination) and from sediments from factories of nonferrous metallurgy in Belgium and mine areas in Zaire. From the different soil samples, strains could be isolated and hybridized with the czc probe (resistance to Cd(2+), Co(2+), and Zn(2+) from plasmid pMOL30). Percentages of CFU isolated on nonselective plates which hybridized with the czc and the mercury resistance probes were, respectively, 25 and 0% for the zinc desert, 15 to 20 and 10 to 20% for the two Belgian factories, and 40 and 40% for the Likasi mine area. Most of these strains also carried two large plasmids of about the same size as those of A. eutrophus CH34 and shared many phenotypic traits with this strain. These findings indicated a certain correlation between the heavy-metal content in contaminated soils and the presence of heavy-metal-resistant megaplasmid-bearing A. eutrophus strains

    Estimating feedforward vs. feedback control of speech production through kinematic analyses of unperturbed articulatory movements

    Get PDF
    To estimate the contributions of feedforward vs. feedback control systems in speech articulation, we analyzed the correspondence between initial and final kinematics in unperturbed tongue and jaw movements for consonant-vowel (CV) and vowel-consonant (VC) syllables. If movement extents and endpoints are highly predictable from early kinematic information, then the movements were most likely completed without substantial online corrections (feedforward control); if the correspondence between early kinematics and final amplitude or position is low, online adjustments may have altered the planned trajectory (feedback control) (Messier and Kalaska, 1999). Five adult speakers produced CV and VC syllables with high, mid, or low vowels while movements of the tongue and jaw were tracked electromagnetically. The correspondence between the kinematic parameters peak acceleration or peak velocity and movement extent as well as between the articulators' spatial coordinates at those kinematic landmarks and movement endpoint was examined both for movements across different target distances (i.e., across vowel height) and within target distances (i.e., within vowel height). Taken together, results suggest that jaw and tongue movements for these CV and VC syllables are mostly under feedforward control but with feedback-based contributions. One type of feedback-driven compensatory adjustment appears to regulate movement duration based on variation in peak acceleration. Results from a statistical model based on multiple regression are presented to illustrate how the relative strength of these feedback contributions can be estimated

    Perceptual formant discrimination during speech movement planning

    No full text
    Data repository for https://doi.org/10.1101/2023.10.11.56142

    Limited Pre-Speech Auditory Modulation in Individuals Who Stutter: Data and Hypotheses

    No full text
    corecore