49 research outputs found

    Advanced oxidation processes for the removal of cyanobacterial toxins from drinking water

    Get PDF
    Drinking water production faces many different challenges with one of them being naturally produced cyanobacterial toxins. Since pollutants become more abundant and persistent today, conventional water treatment is often no longer sufficient to provide adequate removal. Among other emerging technologies, advanced oxidation processes (AOPs) have a great potential to appropriately tackle this issue. This review addresses the economic and health risks posed by cyanotoxins and discusses their removal from drinking water by AOPs. The current state of knowledge on AOPs and their application for cyanotoxin degradation is synthesized to provide an overview on available techniques and effects of water quality, toxin- and technique-specific parameters on their degradation efficacy. The different AOPs are compared based on their efficiency and applicability, considering economic, practical and environmental aspects and their potential to generate toxic disinfection byproducts. For future research, more relevant studies to include the degradation of less-explored cyanotoxins, toxin mixtures in actual surface water, assessment of residual toxicity and scale-up are recommended. Since actual surface water most likely contains more than just cyanotoxins, a multi-barrier approach consisting of a series of different physical, biological and chemical-especially oxidative-treatment steps is inevitable to ensure safe and high-quality drinking water

    On scaling of human body models

    Get PDF
    Abstract Human body is not an unique being, everyone is another from the point of view of anthropometry and mechanical characteristics which means that division of the human body population to categories like 5%-tile, 50%-tile and 95%-tile from the application point of view is not enough. On the other hand, the development of a particular human body model for all of us is not possible. That is why scaling and morphing algorithms has started to be developed. The current work describes the development of a tool for scaling of the human models. The idea is to have one (or couple of) standard model(s) as a base and to create other models based on these basic models. One has to choose adequate anthropometrical and biomechanical parameters that describe given group of humans to be scaled and morphed among

    An adverse outcome pathway based in vitro characterization of novel flame retardants-induced hepatic steatosis

    Get PDF
    A wide range of novel replacement flame retardants (nFRs) is consistently detected in increasing concentrations in the environment and human matrices. Evidence suggests that nFRs exposure may be associated with disruption of the endocrine system, which has been linked with the etiology of various metabolic disorders, including nonalcoholic fatty liver disease (NAFLD). NAFLD is a multifactorial disease characterized by the uncontrolled accumulation of fats (lipids) in the hepatocytes and involves multiple-hit pathogenesis, including exposure to occupational and environmental chemicals such as organophosphate flame retardants (OPFRs). In the present study we aimed to investigate the potential mechanisms of the nFRs-induced hepatic steatosis in the human liver cells. In this study, we employed an in vitro bioassay toolbox to assess the key events (KEs) in the proposed adverse outcome pathways (AOP) (s) for hepatic steatosis. We examined nine nFRs using AOP- based in vitro assays measuring KEs such as lipid accumulation, mitochondrial dysfunction, gene expression, and in silico approach to identify the putative molecular initiating events (MIEs). Our findings suggest that several tested OPFRs induced lipid accumulation in human liver cell culture. Tricresyl phosphate (TMPP), triphenyl phosphate (TPHP), tris(1,3-dichloropropyl) phosphate (TDCIPP), and 2-ethylhexyl diphenyl phosphate (EHDPP) induced the highest lipid accumulation by altering the expression of genes encoding hepatic de novo lipogenesis and mitochondrial dysfunction depicted by decreased cellular ATP production. Available in vitro data from ToxCast and in silico molecular docking suggests that pregnane X receptor (PXR) and peroxisome proliferator-activated receptor gamma (PPAR gamma) could be the molecular targets for the tested nFRs. The study identifies several nFRs, such as TMPP and EHDPP, TPHP, and TDCIPP, as potential risk factor for NAFLD and advances our understanding of the mechanisms involved, demonstrating the utility of an AOP-based strategy for screening and prioritizing chemicals and elucidating the molecular mechanisms of toxicity

    Levels and risks of antineoplastic drugs in households of oncology patients, hospices and retirement homes

    Get PDF
    Background Contamination of the indoor environment by antineoplastic drugs (ADs) is known to pose health risks to the exposed staff in hospitals or pharmacies. ADs may also contaminate households of the patients receiving chemotherapy, but the exposure levels and potential risks to family members have not been studied. The objective was to provide an in-depth research of surface contamination by ADs inside homes focusing on the households of oncology patients, hospices, and retirement houses. Methods The study was carried out in 17 patient households, 2 hospices, and 3 retirement homes. Surfaces were sampled using a standardized approach and the wipe samples were analyzed by UPLC-MS for 11 organic ADs and by ICP-MS/MS for total Pt as a marker of Pt-based ADs. Results The main study included repeated samplings of surfaces (floors, desktops) in households of 17 ambulant oncology patients receiving different chemotherapies with cyclophosphamide (CP), platinum-based drugs (Pt), doxorubicin (DOX), 5-fluorouracil (FU) and others. Patients treated with chemotherapy were found to serve as a source of contamination for their households, representing thus a risk to sensitive family members such as children or elderly people. Carcinogenic CP was commonly found at relatively high concentrations, especially during the first 6 days after the chemotherapy (maximum 511 pg/cm(2)). Sweat seems to be a major medium for the spread of the contamination, and high and long-time persisting CP levels (traces still found after 6 months post-chemotherapy) were found on various desktops including kitchen dining tables. The pilot studies in hospices and retirement homes indicated rather lower exposure risks of the personnel but pointed to potential long-lasting contamination by Pt or some other persistent ADs such as ifosfamide (IF). Conclusions This is one of the first studies investigating the contamination by ADs in indoor environments outside of hospitals or pharmacies. Peak concentrations of the carcinogenic CP in households were comparable to those observed in hospitals, but the temporal exposures are likely to cause lower risks to family members and caregivers compared to the long-time occupationally exposed health care personnel. The information guidance flier with practical recommendations was prepared improving thus information as well as prevention of eventual risks for family members

    AOP-helpFinder webserver: a tool for comprehensive analysis of the literature to support adverse outcome pathways development

    Get PDF
    Motivation: Adverse outcome pathways (AOPs) are a conceptual framework developed to support the use of alternative toxicology approaches in the risk assessment. AOPs are structured linear organizations of existing knowledge illustrating causal pathways from the initial molecular perturbation triggered by various stressors, through key events (KEs) at different levels of biology, to the ultimate health or ecotoxicological adverse outcome. Results: Artificial intelligence can be used to systematically explore available toxicological data that can be parsed in the scientific literature. Recently, a tool called AOP-helpFinder was developed to identify associations between stressors and KEs supporting thus documentation of AOPs. To facilitate the utilization of this advanced bioinformatics tool by the scientific and the regulatory community, a webserver was created. The proposed AOP-helpFinder webserver uses better performing version of the tool which reduces the need for manual curation of the obtained results. As an example, the server was successfully applied to explore relationships of a set of endocrine disruptors with metabolic-related events. The AOP-helpFinder webserver assists in a rapid evaluation of existing knowledge stored in the PubMed database, a global resource of scientific information, to build AOPs and Adverse Outcome Networks supporting the chemical risk assessment

    Flame Retardants-Mediated Interferon Signaling in the Pathogenesis of Nonalcoholic Fatty Liver Disease

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is a growing concern worldwide, affecting 25% of the global population. NAFLD is a multifactorial disease with a broad spectrum of pathology includes steatosis, which gradually progresses to a more severe condition such as nonalcoholic steatohepatitis (NASH), fibrosis, cirrhosis, and eventually leads to hepatic cancer. Several risk factors, including exposure to environmental toxicants, are involved in the development and progression of NAFLD. Environmental factors may promote the development and progression of NAFLD by various biological alterations, including mitochondrial dysfunction, reactive oxygen species production, nuclear receptors dysregulation, and interference in inflammatory and immune-mediated signaling. Moreover, environmental contaminants can influence immune responses by impairing the immune system's components and, ultimately, disease susceptibility. Flame retardants (FRs) are anthropogenic chemicals or mixtures that are being used to inhibit or delay the spread of fire. FRs have been employed in several household and outdoor products; therefore, human exposure is unavoidable. In this review, we summarized the potential mechanisms of FRs-associated immune and inflammatory signaling and their possible contribution to the development and progression of NAFLD, with an emphasis on FRs-mediated interferon signaling. Knowledge gaps are identified, and emerging pharmacotherapeutic molecules targeting the immune and inflammatory signaling for NAFLD are also discussed

    Microbiome Composition and Function in Aquatic Vertebrates: Small Organisms Making Big Impacts on Aquatic Animal Health

    Get PDF
    Aquatic ecosystems are under increasing stress from global anthropogenic and natural changes, including climate change, eutrophication, ocean acidification, and pollution. In this critical review, we synthesize research on the microbiota of aquatic vertebrates and discuss the impact of emerging stressors on aquatic microbial communities using two case studies, that of toxic cyanobacteria and microplastics. Most studies to date are focused on host-associated microbiomes of individual organisms, however, few studies take an integrative approach to examine aquatic vertebrate microbiomes by considering both host-associated and free-living microbiota within an ecosystem. We highlight what is known about microbiota in aquatic ecosystems, with a focus on the interface between water, fish, and marine mammals. Though microbiomes in water vary with geography, temperature, depth, and other factors, core microbial functions such as primary production, nitrogen cycling, and nutrient metabolism are often conserved across aquatic environments. We outline knowledge on the composition and function of tissue-specific microbiomes in fish and marine mammals and discuss the environmental factors influencing their structure. The microbiota of aquatic mammals and fish are highly unique to species and a delicate balance between respiratory, skin, and gastrointestinal microbiota exists within the host. In aquatic vertebrates, water conditions and ecological niche are driving factors behind microbial composition and function. We also generate a comprehensive catalog of marine mammal and fish microbial genera, revealing commonalities in composition and function among aquatic species, and discuss the potential use of microbiomes as indicators of health and ecological status of aquatic ecosystems. We also discuss the importance of a focus on the functional relevance of microbial communities in relation to organism physiology and their ability to overcome stressors related to global change. Understanding the dynamic relationship between aquatic microbiota and the animals they colonize is critical for monitoring water quality and population health

    Treatment of cylindrospermopsin by hydroxyl and sulfate radicals: Does degradation equal detoxification

    Get PDF
    Drinking water treatment ultimately aims to provide safe and harmless drinking water. Therefore, the suitability of a treatment process should not only be assessed based on reducing the concentration os a pollutant concentration but, more importantly, on reducing its toxicity. Hence, the main objective of this study was to answer whether the degradation of a highly toxic compound of global concern for drinking water equals its detoxification. We, therefore, investigated the treatment of cylindrospermopsin (CYN) by center dot OH and SO4-center dot produced in Fenton and Fenton-like reactions. Although SO4-center dot radicals removed the toxin more effectively, both radical species substantially degraded CYN. The underlying degradation mechanisms were similar for both radical species and involved hydroxylation, dehydrogenation, decarboxylation, sulfate group removal, ring cleavage, and further fragmentation. The hydroxymethyl uracil and tricyclic guanidine moieties were the primary targets. Furthermore, the residual toxicity, assessed by a 3-dimensional human in vitro liver model, was substantially reduced during the treatment by both radical species. Although the results indicated that some of the formed degradation products might still be toxic, the overall reduction of the toxicity together with the proposed degradation pathways allowed us to conclude: "Yes, degradation of CYN equals its detoxification!"
    corecore