79 research outputs found

    The development of stimulus and response interference control in mid-childhood

    Get PDF
    Interference control, the ability to overcome distraction from irrelevant information, undergoes considerable improvement during childhood yet the mechanisms driving these changes remain unclear. The present study investigated the relative influence of interference at the level of the stimulus or the response. 7-, 10- and 20-year-olds completed a flanker paradigm in which stimulus and response interference were experimentally manipulated. The influence of stimulus interference decreased from 7- to 10-years whereas there was no difference in response interference across age groups. The findings demonstrate that a range of processes contribute to the development of interference control, and may influence performance to a greater or lesser extent depending on task requirements and the age of the child

    Shifting development in mid-childhood: the influence of between-task interference

    Get PDF
    Performance on the task-switching paradigm is greatly affected by the amount of conflict between tasks. Compared to adults, children appear to be particularly influenced by this conflict, suggesting that the ability to resolve interference between tasks improves with age. We used the task-switching paradigm to investigate how this ability develops in mid-childhood. Experiment 1 compared 5- to 8-year-olds’ and 9- to 11-year-olds’ ability to switch between decisions about the colour of an object and its shape. The 5- to 8-year-olds were slower to switch task and experienced more interference from the irrelevant task than the 9-to 11-year-olds, suggesting a developmental improvement in resolving conflict between tasks during mid-childhood. Experiment 2 explored this further, examining the influence of stimulus and response interference at different ages. This was done by separating the colour and shape dimensions of the stimulus and reducing overlap between responses. The results supported the development of conflict resolution in task-switching during mid-childhood. They also revealed that a complex interplay of factors, including the tasks used and previous experience with the task, affected children’s shifting performance

    Self-ordered pointing as a test of working memory in typically developing children

    Get PDF
    The self-ordered pointing test (SOPT; Petrides & Milner, 1982) is a test of non-spatial executive working memory requiring the ability to generate and monitor a sequence of responses. Although used with developmental clinical populations there are few normative data against which to compare atypical performance. Typically developing children (5!11 years) and young adults performed two versions of the SOPT, one using pictures of familiar objects and the other hard-to-verbalise abstract designs. Performance improved with age but the children did not reach adult levels of performance. Participants of all ages found the object condition easier than the abstract condition, suggesting that verbal processes are utilised by the SOPT. However, performance on the task was largely independent from verbal and nonverbal cognitive ability. Overall the results suggest that the SOPT is a sensitive measure of executive working memory

    Teachers' understanding of the role of executive functions in mathematics learning

    Get PDF
    Cognitive psychology research has suggested an important role for executive functions, the set of skills that monitor and control thought and action, in learning mathematics. However, there is currently little evidence about whether teachers are aware of the importance of these skills and, if so, how they come by this information. We conducted an online survey of teachers' views on the importance of a range of skills for mathematics learning. Teachers rated executive function skills, and in particular inhibition and shifting, to be important for mathematics. The value placed on executive function skills increased with increasing teaching experience. Most teachers reported that they were aware of these skills, although few knew the term “executive functions.” This awareness had come about through their teaching experience rather than from formal instruction. Researchers and teacher educators could do more to highlight the importance of these skills to trainee or new teachers

    Go or no-go? Developmental improvements in the efficiency of response inhibition in mid-childhood

    Get PDF
    This experiment used a modified go/no-go paradigm to investigate the processes by which response inhibition becomes more efficient during mid-childhood. The novel task, which measured trials on which a response was initiated but not completed, was sensitive to developmental changes in response inhibition. The effect of inducing time pressure by narrowing allowable response time was also examined. While increasing time pressure did not reduce the inhibitory demands of the task for either age group, older children (aged 9-to-11 years) were able to inhibit their responses at an earlier stage of movement than younger children (aged 5-to-7 years). This shows that as children get older they become more efficient at controlling their behaviour which drives developmental improvements in response inhibition

    The roles of the central executive and visuospatial storage in mental arithmetic: a comparison across strategies

    Get PDF
    Previous research has demonstrated that working memory plays an important role in arithmetic. Different arithmetical strategies rely on working memory to different extents-for example, verbal working memory has been found to be more important for procedural strategies, such as counting and decomposition, than for retrieval strategies. Surprisingly, given the close connection between spatial and mathematical skills, the role of visuospatial working memory has received less attention and is poorly understood. This study used a dual-task methodology to investigate the impact of a dynamic spatial n-back task (Experiment 1) and tasks loading the visuospatial sketchpad and central executive (Experiment 2) on adults' use of counting, decomposition, and direct retrieval strategies for addition. While Experiment 1 suggested that visuospatial working memory plays an important role in arithmetic, especially when counting, the results of Experiment 2 suggested this was primarily due to the domain-general executive demands of the n-back task. Taken together, these results suggest that maintaining visuospatial information in mind is required when adults solve addition arithmetic problems by any strategy but the role of domain-general executive resources is much greater than that of the visuospatial sketchpad. © 2013 The Author(s). Published by Taylor & Francis

    Mathematics students demonstrate superior visuo-spatial working memory to humanities students under conditions of low central executive processing load

    Get PDF
    Previous research has demonstrated that working memory performance is linked to mathematics achievement. Most previous studies have involved children and arithmetic rather than more advanced forms of mathematics. This study compared the performance of groups of adult mathematics and humanities students. Experiment 1 employed verbal and visuo-spatial working memory span tasks using a novel face-matching processing element. Results showed that mathematics students had greater working memory capacity in the visuospatial domain only. Experiment 2 replicated this and demonstrated that neither visuo-spatial short-term memory nor endogenous spatial attention explained the visuo-spatial working memory differences. Experiment 3 used working memory span tasks with more traditional verbal or visuo-spatial processing elements to explore the effect of processing type. In this study mathematics students showed superior visuo-spatial working memory capacity only when the processing involved had a comparatively low level of central executive involvement. Both visuo-spatial working memory capacity and general visuo-spatial skills predicted mathematics achievement

    Direct and indirect influences of executive functions on mathematics achievement

    Get PDF
    Achievement in mathematics is predicted by an individual’s domain-specific factual knowledge, procedural skill and conceptual understanding as well as domain-general executive function skills. In this study we investigated the extent to which executive function skills contribute to these three components of mathematical knowledge, whether this mediates the relationship between executive functions and overall mathematics achievement, and if these relationships change with age. Two hundred and ninety-three participants aged between 8 and 25 years completed a large battery of mathematics and executive function tests. Domain-specific skills partially mediated the relationship between executive functions and mathematics achievement: Inhibitory control within the numerical domain was associated with factual knowledge and procedural skill, which in turn was associated with mathematical achievement. Working memory contributed to mathematics achievement indirectly through factual knowledge, procedural skill and, to a lesser extent, conceptual understanding. There remained a substantial direct pathway between working memory and mathematics achievement however, which may reflect the role of working memory in identifying and constructing problem representations. These relationships were remarkably stable from 8 years through to young adulthood. Our findings help to refine existing multi-component frameworks of mathematics and understand the mechanisms by which executive functions support mathematics achievement

    Cross-modal interference-control is reduced in childhood but maintained in aging: a cohort study of stimulus-and response-interference in cross-modal and unimodal Stroop tasks

    Get PDF
    Interference-control is the ability to exclude distractions and focus on a specific task or stimulus. However, it is currently unclear whether the same interference-control mechanisms underlie the ability to ignore unimodal and cross-modal distractions. In two experiments we assessed whether unimodal and cross-modal interference follow similar trajectories in development and aging and occur at similar processing levels. In Experiment 1, 42 children(6-11 years), 31 younger adults (18-25 years) and 32 older adults (60-84 years) identified colour rectangles with either written (unimodal) or spoken (cross-modal) distractor-words. Stimuli could be congruent, incongruent but mapped to the same response (stimulus-incongruent), or incongruent and mapped to different responses (response-incongruent), thus separating interference occurring at early (sensory) and late (response) processing levels. Unimodal interference was worst in childhood and old age; however, older adults maintained the ability to ignore cross-modal distraction. Unimodal but not cross-modal response interference also reduced accuracy. In Experiment 2 we compared the effect of audition on vision and vice versa in 52 children (6-11 years), 30 young adults (22-33 years) and 30 older adults (60-84 years). As in Experiment 1, older adults maintained the ability to ignore cross-modal distraction arising from either modality and neither type of cross-modal distraction limited accuracy in adults. However cross-modal distraction still reduced accuracy in children and children were more slowed by stimulus-interference compared with adults. We conclude that; unimodal and cross-modal interference follow different lifespan trajectories and differences in stimulus- and response-interference may increase cross-modal distractibility in childhood

    The role of cognitive inhibition in different components of arithmetic.

    Get PDF
    Research has established that executive functions, the skills required to monitor and control thought and action, are related to achievement in mathematics. Until recently research has focused on working memory, but studies are beginning to show that inhibition skills—the ability to suppress distracting information and unwanted responses—are also important for mathematics. However, these studies employed general mathematics tests and therefore are unable to pinpoint how inhibition skills relate to specific components of mathematics. We explored how inhibition skills are related to overall achievement as well as factual, procedural and conceptual knowledge in 209 participants aged 11–12, 13–14 and adults. General mathematics achievement was more strongly related to inhibition measured in numerical compared with non-numerical contexts. Inhibition skills were related to conceptual knowledge in older participants, but procedural skills in younger participants. These differing relationships can shed light on the mechanisms by which inhibition is involved in mathematics
    • …
    corecore