30 research outputs found

    The effects of grain shape and frustration in a granular column near jamming

    Full text link
    We investigate the full phase diagram of a column of grains near jamming, as a function of varying levels of frustration. Frustration is modelled by the effect of two opposing fields on a grain, due respectively to grains above and below it. The resulting four dynamical regimes (ballistic, logarithmic, activated and glassy) are characterised by means of the jamming time of zero-temperature dynamics, and of the statistics of attractors reached by the latter. Shape effects are most pronounced in the cases of strong and weak frustration, and essentially disappear around a mean-field point.Comment: 17 pages, 19 figure

    Identifying and prioritising services in European terrestrial and freshwater ecosystems

    Get PDF
    Ecosystems are multifunctional and provide humanity with a broad array of vital services. Effective management of services requires an improved evidence base, identifying the role of ecosystems in delivering multiple services, which can assist policy-makers in maintaining them. Here, information from the literature and scientific experts was used to systematically document the importance of services and identify trends in their use and status over time for the main terrestrial and freshwater ecosystems in Europe. The results from this review show that intensively managed ecosystems contribute mostly to vital provisioning services (e.g. agro-ecosystems provide food via crops and livestock, and forests provide wood), while semi-natural ecosystems (e.g. grasslands and mountains) are key contributors of genetic resources and cultural services (e.g. aesthetic values and sense of place). The most recent European trends in human use of services show increases in demand for crops from agro-ecosystems, timber from forests, water flow regulation from rivers, wetlands and mountains, and recreation and ecotourism in most ecosystems, but decreases in livestock production, freshwater capture fisheries, wild foods and virtually all services associated with ecosystems which have considerably decreased in area (e.g. semi-natural grasslands). The condition of the majority of services show either a degraded or mixed status across Europe with the exception of recent enhancements in timber production in forests and mountains, freshwater provision, water/erosion/natural hazard regulation and recreation/ecotourism in mountains, and climate regulation in forests. Key gaps in knowledge were evident for certain services across all ecosystems, including the provision of biochemicals and natural medicines, genetic resources and the regulating services of seed dispersal, pest/disease regulation and invasion resistance

    Assessing the role of EO in biodiversity monitoring: options for integrating in-situ observations with EO within the context of the EBONE concept

    Get PDF
    The European Biodiversity Observation Network (EBONE) is a European contribution on terrestrial monitoring to GEO BON, the Group on Earth Observations Biodiversity Observation Network. EBONE’s aims are to develop a system of biodiversity observation at regional, national and European levels by assessing existing approaches in terms of their validity and applicability starting in Europe, then expanding to regions in Africa. The objective of EBONE is to deliver: 1. A sound scientific basis for the production of statistical estimates of stock and change of key indicators; 2. The development of a system for estimating past changes and forecasting and testing policy options and management strategies for threatened ecosystems and species; 3. A proposal for a cost-effective biodiversity monitoring system. There is a consensus that Earth Observation (EO) has a role to play in monitoring biodiversity. With its capacity to observe detailed spatial patterns and variability across large areas at regular intervals, our instinct suggests that EO could deliver the type of spatial and temporal coverage that is beyond reach with in-situ efforts. Furthermore, when considering the emerging networks of in-situ observations, the prospect of enhancing the quality of the information whilst reducing cost through integration is compelling. This report gives a realistic assessment of the role of EO in biodiversity monitoring and the options for integrating in-situ observations with EO within the context of the EBONE concept (cfr. EBONE-ID1.4). The assessment is mainly based on a set of targeted pilot studies. Building on this assessment, the report then presents a series of recommendations on the best options for using EO in an effective, consistent and sustainable biodiversity monitoring scheme. The issues that we faced were many: 1. Integration can be interpreted in different ways. One possible interpretation is: the combined use of independent data sets to deliver a different but improved data set; another is: the use of one data set to complement another dataset. 2. The targeted improvement will vary with stakeholder group: some will seek for more efficiency, others for more reliable estimates (accuracy and/or precision); others for more detail in space and/or time or more of everything. 3. Integration requires a link between the datasets (EO and in-situ). The strength of the link between reflected electromagnetic radiation and the habitats and their biodiversity observed in-situ is function of many variables, for example: the spatial scale of the observations; timing of the observations; the adopted nomenclature for classification; the complexity of the landscape in terms of composition, spatial structure and the physical environment; the habitat and land cover types under consideration. 4. The type of the EO data available varies (function of e.g. budget, size and location of region, cloudiness, national and/or international investment in airborne campaigns or space technology) which determines its capability to deliver the required output. EO and in-situ could be combined in different ways, depending on the type of integration we wanted to achieve and the targeted improvement. We aimed for an improvement in accuracy (i.e. the reduction in error of our indicator estimate calculated for an environmental zone). Furthermore, EO would also provide the spatial patterns for correlated in-situ data. EBONE in its initial development, focused on three main indicators covering: (i) the extent and change of habitats of European interest in the context of a general habitat assessment; (ii) abundance and distribution of selected species (birds, butterflies and plants); and (iii) fragmentation of natural and semi-natural areas. For habitat extent, we decided that it did not matter how in-situ was integrated with EO as long as we could demonstrate that acceptable accuracies could be achieved and the precision could consistently be improved. The nomenclature used to map habitats in-situ was the General Habitat Classification. We considered the following options where the EO and in-situ play different roles: using in-situ samples to re-calibrate a habitat map independently derived from EO; improving the accuracy of in-situ sampled habitat statistics, by post-stratification with correlated EO data; and using in-situ samples to train the classification of EO data into habitat types where the EO data delivers full coverage or a larger number of samples. For some of the above cases we also considered the impact that the sampling strategy employed to deliver the samples would have on the accuracy and precision achieved. Restricted access to European wide species data prevented work on the indicator ‘abundance and distribution of species’. With respect to the indicator ‘fragmentation’, we investigated ways of delivering EO derived measures of habitat patterns that are meaningful to sampled in-situ observations

    Conserving biodiversity in a world of conflicts

    No full text

    Ecosystem services and biodiversity conservation: Concepts and a glossary

    No full text
    The RUBICODE project draws on expertise from a range of disciplines to develop and integrate frameworks for assessing the impacts of environmental change on ecosystem service provision, and for rationalising biodiversity conservation in that light. With such diverse expertise and concepts involved, interested parties will not be familiar with all the key terminology. This paper defines the terms as used within the project and, where useful, discusses some reasoning behind the definitions. Terms are grouped by concept rather than being listed alphabetically. © 2010 Springer Science+Business Media B.V.Articl

    Bird Responses at Inherent and Induced Edges in the Murray Mallee, South Australia. 2. Nest predation as an Edge Effect

    No full text
    We assayed nest predation as an edge effect, using artificial ground nests, at inherent (naturally occurring) and induced (human-created) edges in the Murray Mallee, South Australia. Nests were constructed at distances between 0-120 m away from habitat edges. The relative predation rate on nests generally increased close to induced edges with a significant difference (P < 0.05) recorded for two out of five experiments. Predation rate at inherent edges was similar from the edge to the interior, and was lower than that recorded at induced edges. Our results suggest that increased predator numbers, activity or efficiency at locating nests occurred close to the induced edges at our study sites
    corecore