4,260 research outputs found

    ABIOTIC DEGRADATION OF IODOSULFURON-METHYL-ESTER IN AQUEOUS SOLUTION

    Get PDF
    The abiotic degradation of iodosulfuron-methyl-ester was investigated under both alkaline and acidic pH conditions in the dark, and results showed it to be a rather stable molecule in neutral or slightly alkaline environments. Photochemical reactions were studied using a high-pressure mercury arc lamp, and results showed that direct phototransformation is possible under normal environmental conditions (ì > 290 nm). High-performance liquid chromatography (HPLC-UV and HPLC-MS) analyses were used to identify the degradates and to study the kinetics of photodecomposition and hydrolysis. Five main products of iodosulfuron-methyl-ester degradation were tentatively identified, and one of them (4-methoxy-6-methyl-1,3,5-triazin-2-amine) was confirmed using an authentic standard. Among the phototransformation mechanisms, photosubstitution of the iodide atom by a hydroxyl group, photodissociation of the N-S bond, and photoassisted hydrolysis were observed. The quantum efficiencies (multiwavelength quantum yield) of the photodegradation under different conditions were determined, and values of 0.054 ( 0.02 (pH 9.6), 0.08 ( 0.02 (pH 7), and 0.044 ( 0.008 (pH 5.3) were obtained

    Development of a Classical Force Field for the Oxidised Si Surface: Application to Hydrophilic Wafer Bonding

    Full text link
    We have developed a classical two- and three-body interaction potential to simulate the hydroxylated, natively oxidised Si surface in contact with water solutions, based on the combination and extension of the Stillinger-Weber potential and of a potential originally developed to simulate SiO2 polymorphs. The potential parameters are chosen to reproduce the structure, charge distribution, tensile surface stress and interactions with single water molecules of a natively oxidised Si surface model previously obtained by means of accurate density functional theory simulations. We have applied the potential to the case of hydrophilic silicon wafer bonding at room temperature, revealing maximum room temperature work of adhesion values for natively oxidised and amorphous silica surfaces of 97 mJ/m2 and 90mJ/m2, respectively, at a water adsorption coverage of approximately 1 monolayer. The difference arises from the stronger interaction of the natively oxidised surface with liquid water, resulting in a higher heat of immersion (203 mJ/m2 vs. 166 mJ/m2), and may be explained in terms of the more pronounced water structuring close to the surface in alternating layers of larger and smaller density with respect to the liquid bulk. The computed force-displacement bonding curves may be a useful input for cohesive zone models where both the topographic details of the surfaces and the dependence of the attractive force on the initial surface separation and wetting can be taken into account

    Scalar mesons in radiative \phi\to K^0\bar{K}^0\gamma decay

    Full text link
    We study the radiative ϕ→K0Kˉ0γ\phi\to K^0\bar{K}^0\gamma decay within a phenomenological framework by considering the contributions of the f0(980)f_{0}(980) and a0(980)a_{0}(980) scalar resonances. We calculate the branching ratio B(ϕ→K0Kˉ0γ)B(\phi\to K^0\bar{K}^0\gamma) by employing the coupling constants gf0K+K−g_{f_0K^{+}K^{-}} and ga0K+K−g_{a_0K^{+}K^{-}} as determined by different experimental groups.Comment: 10 pages, 3 figure

    Stress Development and Impurity Segregation during Oxidation of the Si(100) Surface

    Full text link
    We have studied the segregation of P and B impurities during oxidation of the Si(100) surface by means of combined static and dynamical first-principles simulations based on density functional theory. In the bare surface, dopants segregate to chemically stable surface sites or to locally compressed subsurface sites. Surface oxidation is accompanied by development of tensile surface stress up to 2.9 N/m at a coverage of 1.5 monolayers of oxygen and by formation of oxidised Si species with charges increasing approximately linearly with the number of neighbouring oxygen atoms. Substitutional P and B defects are energetically unstable within the native oxide layer, and are preferentially located at or beneath the Si/SiOx interface. Consistently, first-principles molecular dynamics simulations of native oxide formation on doped surfaces reveal that dopants avoid the formation of P-O and B-O bonds, suggesting a surface oxidation mechanism whereby impurities remain trapped at the Si/SiOx interface. This seems to preclude a direct influence of impurities on the surface electrostatics and, hence, on the interactions with an external environment

    Two-photon decays of hadronic molecules

    Get PDF
    In many calculations of the two--photon decay of hadronic molecules, the decay matrix element is estimated using the wave function at the origin prescription, in analogy to the two-photon decay of parapositronium. We question the applicability of this procedure to the two-photon decay of hadronic molecules for it introduces an uncontrolled model dependence into the calculation. As an alternative approach, we propose an explicit evaluation of the hadron loop. For shallow bound states, this can be done as an expansion in powers of the range of the molecule binding force. In the leading order one gets the well-known point-like limit answer. We estimate, in a self-consistent and gauge invariant way, the leading range corrections for the two-photon decay width of weakly bound hadronic molecules emerging from kaon loops. We find them to be small. The role of possible short-ranged operators and of the width of the scalars remains to be investigated.Comment: LaTeX2e, 26 pages, new figure and additional appendix added, version to appear in Phys.Rev.
    • …
    corecore