7 research outputs found

    Global patterns of hepatocellular carcinoma management from diagnosis to death: the BRIDGE Study.

    Get PDF
    Background & aimsHepatocellular carcinoma (HCC) is the second most common cause of cancer deaths worldwide. The global HCC BRIDGE study was a multiregional, large-scale, longitudinal cohort study undertaken to improve understanding of real-life management of patients with HCC, from diagnosis to death.MethodsData were collected retrospectively from January 2005 to September 2012 by chart reviews of eligible patients newly diagnosed with HCC at participating institutions.ResultsForty-two sites in 14 countries contributed final data for 18 031 patients. Asia accounted for 67% of patients, Europe for 20% and North America for 13%. As expected, the most common risk factor was hepatitis C virus in North America, Europe and Japan, and hepatitis B virus in China, South Korea and Taiwan. The most common Barcelona Clinic Liver Cancer stage at diagnosis was C in North America, Europe, China and South Korea, and A in Taiwan and Japan. Across all stages, first HCC treatment was most frequently transarterial chemoembolization in North America, Europe, China and South Korea, percutaneous ethanol injection or radiofrequency ablation in Japan and resection in Taiwan. Survival from first HCC treatment varied significantly by region, with median overall survival not reached for Taiwan and 60, 33, 31, 24 and 23 months for Japan, North America, South Korea, Europe and China respectively (P ConclusionsInitial results from the BRIDGE study confirm previously reported regional trends in patient demographic characteristics and HCC risk factors, document the heterogeneity of treatment approaches across regions/countries and underscore the need for earlier HCC diagnosis worldwide

    Design and rationale of the HCC BRIDGE study in China: a longitudinal, multicenter cohort trial in hepatocellular carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>More than 50% of the worldwide cases of hepatocellular carcinoma occur in China, and this malignancy currently represents the country's second leading cause of cancer death in cities and the leading cause in rural areas. Despite recent advances in the control and management of hepatocellular carcinoma within China, this disease remains a major health care issue. The global HCC BRIDGE study, designed to assess patterns of hepatocellular carcinoma therapy use and associated outcomes across real-world clinical practice, has recently been expanded as a national study in China, allowing a detailed analysis of hepatocellular carcinoma in this important country.</p> <p>Methods/Design</p> <p>The global HCC BRIDGE study is a multiregional longitudinal cohort trial including patients newly diagnosed with hepatocellular carcinoma between January 1, 2005, and June 30, 2011, who are receiving treatment for hepatocellular carcinoma via sites in the Asia-Pacific, European, and North American regions. The HCC BRIDGE China national study comprises the portion of the global HCC BRIDGE study conducted within mainland China. Patients will be followed from time of diagnosis of hepatocellular carcinoma (post-January 1, 2005) to time of death or December 31, 2011, whichever comes first. Data will be collected on demographic/clinical characteristics, relevant laboratory values, hepatocellular carcinoma/underlying liver disease treatment, tumor response, adverse events, hospitalizations, and overall survival. The primary study end point is overall survival; secondary end points are disease progression, treatment-limiting adverse events, and treatment failure.</p> <p>Results</p> <p>At the time of writing, 15 sites have selected for participation across all 7 traditional regions of China (North, North-East, East, South, South-West, North-West, and Central). The anticipated study population from the China national study is approximately 9000 patients.</p> <p>Discussion</p> <p>Findings from the HCC BRIDGE China national study, the first geographically representative study of hepatocellular carcinoma in China, will contribute to the understanding of patterns of therapy use and related clinical outcomes and will provide further information on continuing unmet needs for hepatocellular carcinoma throughout this important country.</p

    Comparative effectiveness and safety of pharmaceuticals assessed in observational studies compared with randomized controlled trials

    Get PDF
    BACKGROUND: There have been ongoing efforts to understand when and how data from observational studies can be applied to clinical and regulatory decision making. The objective of this review was to assess the comparability of relative treatment effects of pharmaceuticals from observational studies and randomized controlled trials (RCTs). METHODS: We searched PubMed and Embase for systematic literature reviews published between January 1, 1990, and January 31, 2020, that reported relative treatment effects of pharmaceuticals from both observational studies and RCTs. We extracted pooled relative effect estimates from observational studies and RCTs for each outcome, intervention-comparator, or indication assessed in the reviews. We calculated the ratio of the relative effect estimate from observational studies over that from RCTs, along with the corresponding 95% confidence interval (CI) for each pair of pooled RCT and observational study estimates, and we evaluated the consistency in relative treatment effects. RESULTS: Thirty systematic reviews across 7 therapeutic areas were identified from the literature. We analyzed 74 pairs of pooled relative effect estimates from RCTs and observational studies from 29 reviews. There was no statistically significant difference (based on the 95% CI) in relative effect estimates between RCTs and observational studies in 79.7% of pairs. There was an extreme difference (ratio 1.43) in 43.2% of pairs, and, in 17.6% of pairs, there was a significant difference and the estimates pointed in opposite directions. CONCLUSIONS: Overall, our review shows that while there is no significant difference in the relative risk ratios between the majority of RCTs and observational studies compared, there is significant variation in about 20% of comparisons. The source of this variation should be the subject of further inquiry to elucidate how much of the variation is due to differences in patient populations versus biased estimates arising from issues with study design or analytical/statistical methods

    Comparative effectiveness and safety of pharmaceuticals assessed in observational studies compared with randomized controlled trials

    No full text
    BACKGROUND: There have been ongoing efforts to understand when and how data from observational studies can be applied to clinical and regulatory decision making. The objective of this review was to assess the comparability of relative treatment effects of pharmaceuticals from observational studies and randomized controlled trials (RCTs). METHODS: We searched PubMed and Embase for systematic literature reviews published between January 1, 1990, and January 31, 2020, that reported relative treatment effects of pharmaceuticals from both observational studies and RCTs. We extracted pooled relative effect estimates from observational studies and RCTs for each outcome, intervention-comparator, or indication assessed in the reviews. We calculated the ratio of the relative effect estimate from observational studies over that from RCTs, along with the corresponding 95% confidence interval (CI) for each pair of pooled RCT and observational study estimates, and we evaluated the consistency in relative treatment effects. RESULTS: Thirty systematic reviews across 7 therapeutic areas were identified from the literature. We analyzed 74 pairs of pooled relative effect estimates from RCTs and observational studies from 29 reviews. There was no statistically significant difference (based on the 95% CI) in relative effect estimates between RCTs and observational studies in 79.7% of pairs. There was an extreme difference (ratio 1.43) in 43.2% of pairs, and, in 17.6% of pairs, there was a significant difference and the estimates pointed in opposite directions. CONCLUSIONS: Overall, our review shows that while there is no significant difference in the relative risk ratios between the majority of RCTs and observational studies compared, there is significant variation in about 20% of comparisons. The source of this variation should be the subject of further inquiry to elucidate how much of the variation is due to differences in patient populations versus biased estimates arising from issues with study design or analytical/statistical methods

    Improving Transparency to Build Trust in Real-World Secondary Data Studies for Hypothesis Testing-Why, What, and How: Recommendations and a Road Map from the Real-World Evidence Transparency Initiative

    No full text
    Real-world data (RWD) and the derivations of these data into real-world evidence (RWE) are rapidly expanding from informing healthcare decisions at the patient and health system level to influencing major health policy decisions, including regulatory approvals and coverage. Recent examples include the approval of palbociclib in combination with endocrine therapy for male breast cancer and the inclusion of RWE in the label of paliperidone palmitate for schizophrenia. This interest has created an urgency to develop processes that promote trust in the evidence-generation process. Key stakeholders and decision-makers include patients and their healthcare providers; learning health systems; health technology assessment bodies and payers; pharmacoepidemiologists and other clinical reseachers, and policy makers interested in bioethical and regulatory issues. A key to optimal uptake of RWE is transparency of the research process to enable decision-makers to evaluate the quality of the methods used and the applicability of the evidence that results from the RWE studies. Registration of RWE studies-particularly for hypothesis evaluating treatment effectiveness (HETE) studies-has been proposed to improve transparency, trust, and research replicability. Although registration would not guarantee better RWE studies would be conducted, it would encourage the prospective disclosure of study plans, timing, and rationale for modifications. A joint task force of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the International Society for Pharmacoepidemiology (ISPE) recommended that investigators preregister their RWE studies and post their study protocols in a publicly available forum before starting studies to reduce publication bias and improve the transparency of research methods. Recognizing that published recommendations alone are insufficient, especially without accessible registration options and with no incentives, a group of experts gathered on February 25 and 26, 2019, in National Harbor, Maryland, to explore the structural and practical challenges to the successful implementation of the recommendations of the ISPOR/ISPE task force for preregistration. This positioning article describes a plan for making registration of HETE RWE studies routine. The plan includes specifying the rationale for registering HETE RWE studies, the studies that should be registered, where and when these studies should be registered, how and when analytic deviations from protocols should be reported, how and when to publish results, and incentives to encourage registration. Table 1 summarizes the rationale, goals, and potential solutions that increase transparency, in addition to unique concerns about secondary data studies. Definitions of terms used throughout this report are provided in Table 2

    Improving Transparency to Build Trust in Real-World Secondary Data Studies for Hypothesis Testing-Why, What, and How: Recommendations and a Road Map from the Real-World Evidence Transparency Initiative

    Get PDF
    Real-world data (RWD) and the derivations of these data into real-world evidence (RWE) are rapidly expanding from informing healthcare decisions at the patient and health system level to influencing major health policy decisions, including regulatory approvals and coverage. Recent examples include the approval of palbociclib in combination with endocrine therapy for male breast cancer and the inclusion of RWE in the label of paliperidone palmitate for schizophrenia. This interest has created an urgency to develop processes that promote trust in the evidence-generation process. Key stakeholders and decision-makers include patients and their healthcare providers; learning health systems; health technology assessment bodies and payers; pharmacoepidemiologists and other clinical reseachers, and policy makers interested in bioethical and regulatory issues. A key to optimal uptake of RWE is transparency of the research process to enable decision-makers to evaluate the quality of the methods used and the applicability of the evidence that results from the RWE studies. Registration of RWE studies-particularly for hypothesis evaluating treatment effectiveness (HETE) studies-has been proposed to improve transparency, trust, and research replicability. Although registration would not guarantee better RWE studies would be conducted, it would encourage the prospective disclosure of study plans, timing, and rationale for modifications. A joint task force of the International Society for Pharmacoeconomics and Outcomes Research (ISPOR) and the International Society for Pharmacoepidemiology (ISPE) recommended that investigators preregister their RWE studies and post their study protocols in a publicly available forum before starting studies to reduce publication bias and improve the transparency of research methods. Recognizing that published recommendations alone are insufficient, especially without accessible registration options and with no incentives, a group of experts gathered on February 25 and 26, 2019, in National Harbor, Maryland, to explore the structural and practical challenges to the successful implementation of the recommendations of the ISPOR/ISPE task force for preregistration. This positioning article describes a plan for making registration of HETE RWE studies routine. The plan includes specifying the rationale for registering HETE RWE studies, the studies that should be registered, where and when these studies should be registered, how and when analytic deviations from protocols should be reported, how and when to publish results, and incentives to encourage registration. Table 1 summarizes the rationale, goals, and potential solutions that increase transparency, in addition to unique concerns about secondary data studies. Definitions of terms used throughout this report are provided in Table 2
    corecore