203 research outputs found

    What are the health benefits of active travel? A systematic review of trials and cohort studies.

    Get PDF
    BACKGROUND: Increasing active travel (primarily walking and cycling) has been widely advocated for reducing obesity levels and achieving other population health benefits. However, the strength of evidence underpinning this strategy is unclear. This study aimed to assess the evidence that active travel has significant health benefits. METHODS: The study design was a systematic review of (i) non-randomised and randomised controlled trials, and (ii) prospective observational studies examining either (a) the effects of interventions to promote active travel or (b) the association between active travel and health outcomes. Reports of studies were identified by searching 11 electronic databases, websites, reference lists and papers identified by experts in the field. Prospective observational and intervention studies measuring any health outcome of active travel in the general population were included. Studies of patient groups were excluded. RESULTS: Twenty-four studies from 12 countries were included, of which six were studies conducted with children. Five studies evaluated active travel interventions. Nineteen were prospective cohort studies which did not evaluate the impact of a specific intervention. No studies were identified with obesity as an outcome in adults; one of five prospective cohort studies in children found an association between obesity and active travel. Small positive effects on other health outcomes were found in five intervention studies, but these were all at risk of selection bias. Modest benefits for other health outcomes were identified in five prospective studies. There is suggestive evidence that active travel may have a positive effect on diabetes prevention, which may be an important area for future research. CONCLUSIONS: Active travel may have positive effects on health outcomes, but there is little robust evidence to date of the effectiveness of active transport interventions for reducing obesity. Future evaluations of such interventions should include an assessment of their impacts on obesity and other health outcomes

    Dimethyl Sulfoxide (DMSO) Exacerbates Cisplatin-induced Sensory Hair Cell Death in Zebrafish (Danio rerio)

    Get PDF
    Inner ear sensory hair cells die following exposure to aminoglycoside antibiotics or chemotherapeutics like cisplatin, leading to permanent auditory and/or balance deficits in humans. Zebrafish (Danio rerio) are used to study drug-induced sensory hair cell death since their hair cells are similar in structure and function to those found in humans. We developed a cisplatin dose-response curve using a transgenic line of zebrafish that expresses membrane-targeted green fluorescent protein under the control of the Brn3c promoter/enhancer. Recently, several small molecule screens have been conducted using zebrafish to identify potential pharmacological agents that could be used to protect sensory hair cells in the presence of ototoxic drugs. Dimethyl sulfoxide (DMSO) is typically used as a solvent for many pharmacological agents in sensory hair cell cytotoxicity assays. Serendipitously, we found that DMSO potentiated the effects of cisplatin and killed more sensory hair cells than treatment with cisplatin alone. Yet, DMSO alone did not kill hair cells. We did not observe the synergistic effects of DMSO with the ototoxic aminoglycoside antibiotic neomycin. Cisplatin treatment with other commonly used organic solvents (i.e. ethanol, methanol, and polyethylene glycol 400) also did not result in increased cell death compared to cisplatin treatment alone. Thus, caution should be exercised when interpreting data generated from small molecule screens since many compounds are dissolved in DMSO.National Institutes of Health (U.S.) (DC010998)National Institutes of Health (U.S.) (NIH DC010231)Harvard College (1780- )Sarah Fuller Foundation for Little Deaf Childre

    Mutational Analysis of EGFR and Related Signaling Pathway Genes in Lung Adenocarcinomas Identifies a Novel Somatic Kinase Domain Mutation in FGFR4

    Get PDF
    BACKGROUND: Fifty percent of lung adenocarcinomas harbor somatic mutations in six genes that encode proteins in the EGFR signaling pathway, i.e., EGFR, HER2/ERBB2, HER4/ERBB4, PIK3CA, BRAF, and KRAS. We performed mutational profiling of a large cohort of lung adenocarcinomas to uncover other potential somatic mutations in genes of this signaling pathway that could contribute to lung tumorigenesis. METHODOLOGY/PRINCIPAL FINDINGS: We analyzed genomic DNA from a total of 261 resected, clinically annotated non-small cell lung cancer (NSCLC) specimens. The coding sequences of 39 genes were screened for somatic mutations via high-throughput dideoxynucleotide sequencing of PCR-amplified gene products. Mutations were considered to be somatic only if they were found in an independent tumor-derived PCR product but not in matched normal tissue. Sequencing of 9MB of tumor sequence identified 239 putative genetic variants. We further examined 22 variants found in RAS family genes and 135 variants localized to exons encoding the kinase domain of respective proteins. We identified a total of 37 non-synonymous somatic mutations; 36 were found collectively in EGFR, KRAS, BRAF, and PIK3CA. One somatic mutation was a previously unreported mutation in the kinase domain (exon 16) of FGFR4 (Glu681Lys), identified in 1 of 158 tumors. The FGFR4 mutation is analogous to a reported tumor-specific somatic mutation in ERBB2 and is located in the same exon as a previously reported kinase domain mutation in FGFR4 (Pro712Thr) in a lung adenocarcinoma cell line. CONCLUSIONS/SIGNIFICANCE: This study is one of the first comprehensive mutational analyses of major genes in a specific signaling pathway in a sizeable cohort of lung adenocarcinomas. Our results suggest the majority of gain-of-function mutations within kinase genes in the EGFR signaling pathway have already been identified. Our findings also implicate FGFR4 in the pathogenesis of a subset of lung adenocarcinomas

    Pan-Cancer Analysis of lncRNA Regulation Supports Their Targeting of Cancer Genes in Each Tumor Context

    Get PDF
    Long noncoding RNAs (lncRNAs) are commonly dys-regulated in tumors, but only a handful are known toplay pathophysiological roles in cancer. We inferredlncRNAs that dysregulate cancer pathways, onco-genes, and tumor suppressors (cancer genes) bymodeling their effects on the activity of transcriptionfactors, RNA-binding proteins, and microRNAs in5,185 TCGA tumors and 1,019 ENCODE assays.Our predictions included hundreds of candidateonco- and tumor-suppressor lncRNAs (cancerlncRNAs) whose somatic alterations account for thedysregulation of dozens of cancer genes and path-ways in each of 14 tumor contexts. To demonstrateproof of concept, we showed that perturbations tar-geting OIP5-AS1 (an inferred tumor suppressor) andTUG1 and WT1-AS (inferred onco-lncRNAs) dysre-gulated cancer genes and altered proliferation ofbreast and gynecologic cancer cells. Our analysis in-dicates that, although most lncRNAs are dysregu-lated in a tumor-specific manner, some, includingOIP5-AS1, TUG1, NEAT1, MEG3, and TSIX, synergis-tically dysregulate cancer pathways in multiple tumorcontexts
    corecore