6 research outputs found

    Atmospheric input of nitrogen into the North Sea: ANICE project overview

    No full text
    The aim of the atmospheric nitrogen inputs into the coastal ecosystem (ANICE) project is to improve transport-chemistry models that estimate nitrogen deposition to the sea. To achieve this, experimental and modelling work is being conducted which aims to improve understanding of the processes involved in the chemical transformation, transport and deposition of atmospheric nitrogen compounds. Of particular emphasis within ANICE is the influence of coastal zone processes. Both short episodes with high deposition and chronic nitrogen inputs are considered in the project. The improved transport-chemistry models will be used to assess the atmospheric inputs of nitrogen compounds into the European regional seas (the North Sea is studied as a prototype) and evaluate the impact of various emission reduction strategies on the atmospheric nitrogen loads. Assessment of the impact of atmospheric nitrogen on coastal ecosystems will be based on comparisons of phytoplankton nitrogen requirements, other external nitrogen inputs to the ANICE area of interest and the direct nitrogen fluxes provided by ANICE. Selected results from both the experimental and modelling components are presented here. The experimental results show the large spatial and temporal variability in the concentrations of gaseous nitrogen compounds, and their influences on fluxes. Model calculations show the strong variation of both concentrations and gradients of nitric acid at fetches of up to 25km. Aerosol concentrations also show high temporal variability and experimental evidence for the reaction between nitric acid and sea salt aerosol is provided by size-segregated aerosol composition measured at both sides of the North Sea. In several occasions throughout the experimental period, air mass back trajectory analysis showed connected flow between the two sampling sites (the Weybourne Atmospheric Observatory on the North Norfolk coast of the UK and Meetpost Noordwijk, a research tower at 9km off the Dutch coast). Results from the METRAS/SEMA mesoscale chemistry transport model system for one of these cases are presented. Measurements of aerosol and rain chemical composition, using equipment mounted on a commercial ferry, show variations in composition across the North Sea. These measurements have been compared to results obtained with the transport-chemistry model ACDEP which calculates the atmospheric inputs into the whole North Sea area. Finally, the results will be made available for the assessment of the impact of atmospheric nitrogen on coastal ecosystems

    Nitrogen deposition to the eastern Atlantic Ocean: The importance of south-easterly flow

    No full text
    Converting measured concentrations into fluxes and using estimates of biological productivity in the coastal waters of the eastern Atlantic Ocean enables us to determine the role of the atmosphere as a source of biologically essential species, including nitrate and ammonium, to the marine biota. To understand the effects of the atmosphere as a source of nitrogen capable of promoting new production, we need to know both the seasonality of the input as well as the effects of extreme high deposition events which, while small in overall annual budget terms, maybe able to extend, or even promote, phytoplankton growth under nutrient depleted summer conditions. Aerosols and rainwater were collected at both Mace Head and at sea aboard RRS Challenger. Temporal patterns have been interpreted using airmass back trajectories which give the predicted air path prior to arrival at the sampling site. Low levels of both nitrate and ammonium are seen associated with marine westerly flow across the Atlantic and northerly air originating in the Arctic region. As expected, marine derived sodium, chloride, magnesium and seasalt sulphate are high during these periods. High concentration nitrate and ammonium events are seen associated with south-easterly flow where the airmass passes over the UK and northern Europe prior to arrival on the west coast of Ireland. In the polluted atmosphere, nitrate exists as nitric acid and as fine mode ( 1 µm diameter) sodium nitrate: HNO3 (g) + NaCl(s) ? NaNO3(s) + HCl(g). This seasalt displacement reaction not only enhances dry nitrate deposition through more efficient gravitational settling of large particles, but also increases the efficiency of precipitational scavenging via inertial impaction. By looking at the size distribution of nitrate, we can see evidence for the seasalt displacement reaction. Under the polluted south-easterly flow, ~40-60% of the nitrate occurs in the coarse mode fraction. Under clean marine conditions, the seasalt displacement reaction results in almost complete conversion of nitrate from the fine to the coarse aerosol mode. By converting measured wet and dry nitrate, ammonium and organic nitrogen concentrations into fluxes and comparing the data with estimates of biological productivity in the surface waters, our data suggest that ~30% of new production in eastern Atlantic surface waters off Ireland can be supported by atmospheric inputs in May 1997 and that most of the input occurs during short lived, high-concentration, south-easterly transport events

    Abstracts of the 6th FECS Conference 1998 Lectures

    No full text
    International audienc

    Abstracts of the 6th FECS Conference 1998 Lectures

    No full text
    corecore