4 research outputs found

    Comparative Technoeconomic Process Analysis of Industrial-Scale Microencapsulation of Bioactives in Cross-Linked Alginate

    No full text
    The food, chemical, and biotechnology industries offer many potential applications for calcium alginate microencapsulation, but this technique is largely confined to the laboratory bench due to scalability challenges. Scaling up the traditional external gelation method requires several costly unit operations. Alternatively, a consolidated process accomplishes alginate cross-linking in situ during spray-drying to form cross-linked alginate microcapsules (‘the CLAMs process’). This work examined the process economics of these two microencapsulation processes through technoeconomic analysis. Parallel batch process models were constructed in SuperPro Designer, initially for encapsulating emulsified fish oil. At all production scales examined, the capital investment and annual operating cost were lower for the CLAMs process. Modifying the external gelation process marginally improved the process economics, but costs remained elevated. The CLAMs process’ economic advantage stemmed from reducing the number of unit procedures, which lowered the equipment purchase cost and the dependent components of capital investment and annual operating cost. Upon modifying the models for microencapsulating hydrophilic cargo (e.g. enzymes, vitamins, microbial concentrates), the CLAMs process remained favorable at all cargo material costs and cargo loadings examined. This work demonstrates the utility of technoeconomic analysis for evaluating microencapsulation processes and may justify applying the CLAMs process at the industrial scale. </div

    Mucin glycosylation changes in cystic fibrosis lung disease are not manifest in submucosal gland secretions

    No full text
    SMG (submucosal gland) secretions are a major component of the airway surface liquid, are associated with innate immunity in the lung, and have been reported to be altered in lung disease. Changes in lung mucosal glycosylation have been reported in CF (cystic fibrosis), which may be responsible for differential bacterial binding to glycosylated components in the lung mucosa and hence increased pre-disposition to pulmonary infection. Glycoproteomic analysis was performed on SMG secretions collected from explanted bronchial tissue of subjects with severe lung disease, with and without CF, and controls without lung disease. Mucins MUC5B and MUC5AC were shown to be the dominant high-molecular-mass glycoprotein components, with a minor non-mucin glycoprotein component, gp-340, also present. Oligosaccharides containing blood-group determinants corresponding to subjects' blood type were abundant on MUC5B/MUC5AC, as were Lewis-type epitopes and their sialylated analogues, which are ligands for pathogens and leucocytes. No significant differences were found in the glycosylation of MUC5B/MUC5AC or gp-340 between CF and non-CF subjects with severe lung disease, implying that CF does not influence SMG secretion mucin glycosylation in end-stage lung disease. There were also no significant differences found in the glycosylation of these components in severe lung disease compared with non-diseased lungs. This suggests that previously reported changes in the glycosylation of respiratory glycoconjugates in CF, and other pulmonary conditions, are not due to the glycosylation of components in SMG secretions, but may involve other secretions, responses or extracellular factors
    corecore