119 research outputs found

    Culicoides biting midges in Spain: a brief overview

    Get PDF
    The number of studies on insects of genus Culicoides Latreille, 1809 (Diptera, Ceratopogonidae) has increased considerably in Spain since 2000, mainly due to their role as vectors of arboviruses that cause disease in animals, especially ruminants. This paper aims to expose some general considerations about Culicoides biting midges in Spain

    Identifying spanish areas at more risk of monthly BTV transmission with a basic reproduction number approach

    Get PDF
    Bluetongue virus (BTV) causes a disease that is endemic in Spain and its two major biological vector species, C. imicola and the Obsoletus complex species, differ greatly in their ecology and distribution. Understanding the seasonality of BTV transmission in risk areas is key to improving surveillance and control programs, as well as to better understand the pathogen transmission networks between wildlife and livestock. Here, monthly risk transmission maps were generated using risk categories based on well-known BTV R0 equations and predicted abundances of the two most relevant vectors in Spain. Previously, Culicoides spp. predicted abundances in mainland Spain and the Balearic Islands were obtained using remote sensing data and random forest machine learning algorithm. Risk transmission maps were externally assessed with the estimated date of infection of BTV-1 and BTV-4 historical outbreaks. Our results highlight the differences in risk transmission during April-October, June-August being the period with higher R0 values. Likewise, a natural barrier has been identified between northern and central-southern areas at risk that may hamper BTV spread between them. Our results can be relevant to implement risk-based interventions for the prevention, control and surveillance of BTV and other diseases shared between livestock and wildlife host populations

    A model for the assessment of bluetongue virus serotype 1 persistence in Spain

    Get PDF
    Bluetongue virus (BTV) is an arbovirus of ruminants that has been circulating in Europe continuously for more than two decades and has become endemic in some countries such as Spain. Spain is ideal for BTV epidemiological studies since BTV outbreaks from different sources and serotypes have occurred continuously there since 2000; BTV-1 has been reported there from 2007 to 2017. Here we develop a model for BTV-1 endemic scenario to estimate the risk of an area becoming endemic, as well as to identify the most influential factors for BTV-1 persistence. We created abundance maps at 1-km2 spatial resolution for the main vectors in Spain, Culicoides imicola and Obsoletus and Pulicaris complexes, by combining environmental satellite data with occurrence models and a random forest machine learning algorithm. The endemic model included vector abundance and host-related variables (farm density). The three most relevant variables in the endemic model were the abundance of C. imicola and Obsoletus complex and density of goat farms (AUC 0.86); this model suggests that BTV-1 is more likely to become endemic in central and southwestern regions of Spain. It only requires host- and vector-related variables to identify areas at greater risk of becoming endemic for bluetongue. Our results highlight the importance of suitable Culicoides spp. prediction maps for bluetongue epidemiological studies and decision-making about control and eradication measures

    Surveillance of a pest through a public health information system: The case of the blackfly (simulium erythrocephalum) in zaragoza (Spain) during 2009–2015

    Get PDF
    Background: Animals and people in many Spanish regions are increasingly being affected by blackfly bites in the last decade. Because of blackflies, the city of Zaragoza has become in recent years a paradigm of discomfort in Europe, with thousands of citizens affected. The OMI-AP system (Stacks, Barcelona, Spain) implemented by the Government of Aragón, a software that manages the electronic medical history of all patients, has been evaluated in order to document the increase of insect bite recorded by the primary care consultations in Zaragoza after the first outbreak of blackflies occurred in 2011. Methods: An observational, ecological and longitudinal study of insect bites recorded at the primary care consultations was carried out in primary care during the period 2009–2015. Results: The incidence of medical consultations by insect bites in Basic Health Areas (BHA) near to rivers is higher than the furthest BHA. Rural BHA are more affected by insect bites than the urban ones. The increase of medical assistance due to insect bites in Zaragoza since 2011 is correlated with the blackflies bites. Conclusions: This tool was very useful to describe the initial stage of this public health problem. It could be used for guiding public health responses in terms of surveillance and management of this pest

    Actualización del catálogo de Culicoides Latreille, 1809 (Diptera, Ceratopogonidae) de España

    Get PDF
    The number of studies on arthropods of genus Culicoides Latreille (Diptera, Ceratopogonidae) has increased considerably in Spain in recent decades. This is due to the role these insects play as vectors of arboviruses that cause disease in animals, but also in humans. This work undertakes an updated catalogue of the species of this genus in our country, through a critical review of the literature, clarifying chronological aspects of these publications carried out for over a century of research. This update shows a total of 81 species of Culicoides in Spain, among which are some to be considered as directly related to the transmission of diseases such as bluetongue and African horse sickness.El número de estudios acerca de los artrópodos del género Culicoides Latreille (Diptera, Ceratopogonidae) en España ha experimentado un elevado incremento en las últimas décadas. Principalmente ello es debido al papel que estos dípteros juegan como vectores de arbovirus causantes de enfermedades en los animales, aunque también en humanos. Este trabajo acomete una actualización del catálogo de las especies que conforman este género en nuestro país, mediante una revisión crítica de la literatura existente, clarificando aspectos cronológicos sobre estas publicaciones llevadas a cabo durante más de un siglo de investigación. Esta actualización muestra un total de 81 especies de Culicoides para España, entre las que se encuentran algunas a tener en cuenta por estar directamente relacionadas con la trasmisión de enfermedades como la Lengua Azul o la Peste Equina Africana

    The use of path analysis to determine effects of environmental factors on the adult seasonality of Culicoides (Diptera: Ceratopogonidae) vector species in Spain

    Get PDF
    Culicoides biting midges (Diptera: Ceratopogonidae) are the main vectors of livestock diseases such as bluetongue (BT) which mainly affect sheep and cattle. In Spain, bluetongue virus (BTV) is transmitted by several Culicoides taxa, including Culicoides imicola, Obsoletus complex, Culicoides newsteadi and Culicoides pulicaris that vary in seasonality and distribution, affecting the distribution and dynamics of BT outbreaks. Path analysis is useful for separating direct and indirect, biotic and abiotic determinants of species' population performance and is ideal for understanding the sensitivity of adult Culicoides dynamics to multiple environmental drivers. Start, end of season and length of overwintering of adult Culicoides were analysed across 329 sites in Spain sampled from 2005 to 2010 during the National Entomosurveillance Program for BTV with path analysis, to determine the direct and indirect effects of land use, climate and host factor variables. Culicoides taxa had species-specific responses to environmental variables. While the seasonality of adult C. imicola was strongly affected by topography, temperature, cover of agro-forestry and sclerophyllous vegetation, rainfall, livestock density, photoperiod in autumn and the abundance of Culicoides females, Obsoletus complex species seasonality was affected by land-use variables such as cover of natural grassland and broad-leaved forest. Culicoides female abundance was the most explanatory variable for the seasonality of C. newsteadi, while C. pulicaris showed that temperature during winter and the photoperiod in November had a strong effect on the start of the season and the length of overwinter period of this species. These results indicate that the seasonal vector-free period (SVFP) in Spain will vary between competent vector taxa and geographic locations, dependent on the different responses of each taxa to environmental conditions

    A study of the composition of the Obsoletus complex and genetic diversity of Culicoides obsoletus populations in Spain

    Get PDF
    Background: The Culicoides obsoletus species complex (henceforth ‘Obsoletus complex’) is implicated in the transmission of several arboviruses that can cause severe disease in livestock, such as bluetongue, African horse sickness, epizootic hemorrhagic disease and Schmallenberg disease. Thus, this study aimed to increase our knowledge of the composition and genetic diversity of the Obsoletus complex by partial sequencing of the cytochrome c oxidase I (cox1) gene in poorly studied areas of Spain. Methods: A study of C. obsoletus populations was carried out using a single-tube multiplex polymerase chain reaction (PCR) assay that was designed to differentiate the Obsoletus complex sibling species Culicoides obsoletus and Culicoides scoticus, based on the partial amplification of the cox1 gene, as well as cox1 georeferenced sequences from Spain available at GenBank. We sampled 117 insects of the Obsoletus complex from six locations and used a total of 238 sequences of C. obsoletus (ss) individuals (sampled here, and from GenBank) from 14 sites in mainland Spain, the Balearic Islands and the Canary Islands for genetic diversity and phylogenetic analyses. Results: We identified 90 C. obsoletus (ss), 19 Culicoides scoticus and five Culicoides montanus midges from the six collection sites sampled, and found that the genetic diversity of C. obsoletus (ss) were higher in mainland Spain than in the Canary Islands. The multiplex PCR had limitations in terms of specificity, and no cryptic species within the Obsoletus complex were identified. Conclusions: Within the Obsoletus complex, C. obsoletus (ss) was the predominant species in the analyzed sites of mainland Spain. Information about the species composition of the Obsoletus complex could be of relevance for future epidemiological studies when specific aspects of the vector competence and capacity of each species have been identified. Our results indicate that the intraspecific divergence is higher in C. obsoletus (ss) northern populations, and demonstrate the isolation of C. obsoletus (ss) populations of the Canary Islands. Graphical abstract: [Figure not available: see fulltext.] © 2021, The Author(s)

    Experimental study of the mechanical transmission of rabbit hemorrhagic disease virus (RHDV2/b) by Aedes Albopictus (Diptera: Clicidae) and Phlebotomus papatasi (diptera: psychodidae); 34447999

    Get PDF
    Rabbit hemorrhagic disease (RHD) is caused by a lagovirus mainly affecting European rabbits (Oryctolagus cuniculus), although other European and North American lagomorph species are also susceptible to fatal infection by the new viral variant RHDV2/b. In the present work, direct mechanical transmission of the rabbit hemorrhagic disease virus (RHDV2/b variant) by the hematophagous Diptera Aedes albopictus (Skuse) (Diptera: Culicidae) and the sand fly Phlebotomus papatasi (Scopoli) (Diptera: Psychodidae) was tested. For each species, six and three laboratory rabbits were exposed to bites of dipterous females partially fed on RHDV2/b viral suspension 2 h and 24 h prior to exposure, respectively. The rabbits were then monitored for clinical changes and mortality for 35 d, and seroconversion was assessed by indirect ELISA. No rabbit died or showed clinical signs of disease, and seroconversion was recorded in two rabbits challenged with P. papatasi females fed the viral suspension 2 h prior to exposure. The number of RHDV2/b RNA copies/female was higher in Ae. albopictus than in P. papatasi but the decrease over time of RNA load in Ae. albopictus was greater than that in P. papatasi. The results of this study suggest the inability of Ae. albopictus to serve as a direct mechanical vector of RHDV2/b, but sand flies could play a role in the local transmission of RHD. © The Author(s) 2021. Published by Oxford University Press on behalf of Entomological Society of America

    Citizen science provides a reliable and scalable tool to track disease-carrying mosquitoes

    Get PDF
    Recent outbreaks of Zika, chikungunya and dengue highlight the importance of better understanding the spread of disease-carrying mosquitoes across multiple spatio-temporal scales. Traditional surveillance tools are limited by jurisdictional boundaries and cost constraints. Here we show how a scalable citizen science system can solve this problem by combining citizen scientists'' observations with expert validation and correcting for sampling effort. Our system provides accurate early warning information about the Asian tiger mosquito (Aedes albopictus) invasion in Spain, well beyond that available from traditional methods, and vital for public health services. It also provides estimates of tiger mosquito risk comparable to those from traditional methods but more directly related to the human-mosquito encounters that are relevant for epidemiological modelling and scalable enough to cover the entire country. These results illustrate how powerful public participation in science can be and suggest citizen science is positioned to revolutionize mosquito-borne disease surveillance worldwide

    At the tip of an iceberg: citizen science and active surveillance collaborating to broaden the known distribution of Aedes japonicus in Spain

    Get PDF
    Background: Active surveillance aimed at the early detection of invasive mosquito species is usually focused on seaports and airports as points of entry, and along road networks as dispersion paths. In a number of cases, however, the first detections of colonizing populations are made by citizens, either because the species has already moved beyond the implemented active surveillance sites or because there is no surveillance in place. This was the case of the first detection in 2018 of the Asian bush mosquito, Aedes japonicus, in Asturias (northern Spain) by the citizen science platform Mosquito Alert. Methods: The collaboration between Mosquito Alert, the Ministry of Health, local authorities and academic researchers resulted in a multi-source surveillance combining active field sampling with broader temporal and spatial citizen-sourced data, resulting in a more flexible and efficient surveillance strategy. Results: Between 2018 and 2020, the joint efforts of administrative bodies, academic teams and citizen-sourced data led to the discovery of this species in northern regions of Spain such as Cantabria and the Basque Country. This raised the estimated area of occurrence of Ae. japonicus from < 900 km2 in 2018 to > 7000 km2 in 2020. Conclusions: This population cluster is geographically isolated from any other population in Europe, which raises questions about its origin, path of introduction and dispersal means, while also highlighting the need to enhance surveillance systems by closely combining crowd-sourced surveillance with public health and mosquito control agencies’ efforts, from local to continental scales. This multi-actor approach for surveillance (either passive and active) shows high potential efficiency in the surveillance of other invasive mosquito species, and specifically the major vector Aedes aegypti which is already present in some parts of Europe. Graphical abstract: [Figure not available: see fulltext.] © 2021, The Author(s)
    corecore