15 research outputs found

    Designs rationnel et exploratoire de nanoparticules Ă  transition de spin

    No full text
    The spin-crossover (SCO) materials based on iron (II) and triazole ligands canchange their spin state under an external perturbation like temperature, pressure or lightirradiation. If these aspects are well known, it is only in the recent years that the SCO-particledesign has attracted attention of the scientific community with increasing interests notablyfocusing on the access to wide ranges of sizes and shapes of nanoparticles. In this context,we rationalized the reverse micellar synthesis, thanks to a scrupulous study of all experimentalparameters, to produce SCO particles with controlled size and shape. For example, underwell-defined experimental conditions, we can now offer rod-shaped particles with sizes rangingfrom 30 to 1000 nm for [Fe(Htrz)2(trz)](BF4). In parallel, we drove the first exploration byspray-drying for SCO materials. Spherical-micrometric particles with different properties, fromthose observed usually, were obtained. Within the design of SCO particles, one of the currentchallenges concerns the grafting of gold particles. In contrast to existing literature results, wepropose a method to graft directly gold nanoparticles on SCO particles leading to hybridparticles denoted SCO@Au. This grafting seems to be more effective than previous resultsand shows itself relevant for a wide range of size of gold particles.Les matĂ©riaux Ă  transition de spin (TS) Ă  base de Fe(II) et de ligands triazolepeuvent changer d’état de spin sous l’effet d’une perturbation extĂ©rieure telle que latempĂ©rature, la pression ou l’irradiation lumineuse. Si ces aspects sont bien connus, ce n’estque depuis quelques annĂ©es que le design des particules Ă  TS connait un vĂ©ritable essor avecpour objectif principal de crĂ©er de larges gammes de tailles et de formes de nanoparticules.C’est dans ce contexte que nous avons rationnalisĂ©, grĂące Ă  un examen scrupuleux de tousles paramĂštres expĂ©rimentaux, la synthĂšse par micelles inverses afin d’élaborer des particulesĂ  TS de tailles et de morphologies contrĂŽlĂ©es. Par exemple, dans des conditionsexpĂ©rimentales bien dĂ©finies, nous pouvons dĂ©sormais offrir un panel de tailles de particulesen forme de bĂątonnet allant de 30 Ă  1000 nm pour le composĂ© [Fe(Htrz)2(trz)](BF4). EnparallĂšle nous avons conduit la toute premiĂšre exploration, pour les matĂ©riaux Ă  TS, de lasynthĂšse par spray-drying. Des particules sphĂ©riques de tailles micromĂ©triques prĂ©sentant despropriĂ©tĂ©s diffĂ©rentes de celles observĂ©es habituellement ont alors Ă©tĂ© obtenues. L’un deschallenges actuels du design des particules Ă  TS concerne le greffage de particules d’or. Al’encontre des rĂ©sultats actuels de la littĂ©rature, nous proposons ici une mĂ©thode de greffagedirect de nanoparticules d’or sur celles Ă  TS conduisant Ă  des particules hybrides de typeTS@Au. Ce greffage apparaĂźt plus efficace que ce qui Ă©tait connu jusqu’à prĂ©sent et, desurcroĂźt, se rĂ©vĂšle pertinent pour une large gamme de taille des particules d’or

    Rational and exploratory design of spin-crossover nanoparticles

    No full text
    Les matĂ©riaux Ă  transition de spin (TS) Ă  base de Fe(II) et de ligands triazolepeuvent changer d’état de spin sous l’effet d’une perturbation extĂ©rieure telle que latempĂ©rature, la pression ou l’irradiation lumineuse. Si ces aspects sont bien connus, ce n’estque depuis quelques annĂ©es que le design des particules Ă  TS connait un vĂ©ritable essor avecpour objectif principal de crĂ©er de larges gammes de tailles et de formes de nanoparticules.C’est dans ce contexte que nous avons rationnalisĂ©, grĂące Ă  un examen scrupuleux de tousles paramĂštres expĂ©rimentaux, la synthĂšse par micelles inverses afin d’élaborer des particulesĂ  TS de tailles et de morphologies contrĂŽlĂ©es. Par exemple, dans des conditionsexpĂ©rimentales bien dĂ©finies, nous pouvons dĂ©sormais offrir un panel de tailles de particulesen forme de bĂątonnet allant de 30 Ă  1000 nm pour le composĂ© [Fe(Htrz)2(trz)](BF4). EnparallĂšle nous avons conduit la toute premiĂšre exploration, pour les matĂ©riaux Ă  TS, de lasynthĂšse par spray-drying. Des particules sphĂ©riques de tailles micromĂ©triques prĂ©sentant despropriĂ©tĂ©s diffĂ©rentes de celles observĂ©es habituellement ont alors Ă©tĂ© obtenues. L’un deschallenges actuels du design des particules Ă  TS concerne le greffage de particules d’or. Al’encontre des rĂ©sultats actuels de la littĂ©rature, nous proposons ici une mĂ©thode de greffagedirect de nanoparticules d’or sur celles Ă  TS conduisant Ă  des particules hybrides de typeTS@Au. Ce greffage apparaĂźt plus efficace que ce qui Ă©tait connu jusqu’à prĂ©sent et, desurcroĂźt, se rĂ©vĂšle pertinent pour une large gamme de taille des particules d’or.The spin-crossover (SCO) materials based on iron (II) and triazole ligands canchange their spin state under an external perturbation like temperature, pressure or lightirradiation. If these aspects are well known, it is only in the recent years that the SCO-particledesign has attracted attention of the scientific community with increasing interests notablyfocusing on the access to wide ranges of sizes and shapes of nanoparticles. In this context,we rationalized the reverse micellar synthesis, thanks to a scrupulous study of all experimentalparameters, to produce SCO particles with controlled size and shape. For example, underwell-defined experimental conditions, we can now offer rod-shaped particles with sizes rangingfrom 30 to 1000 nm for [Fe(Htrz)2(trz)](BF4). In parallel, we drove the first exploration byspray-drying for SCO materials. Spherical-micrometric particles with different properties, fromthose observed usually, were obtained. Within the design of SCO particles, one of the currentchallenges concerns the grafting of gold particles. In contrast to existing literature results, wepropose a method to graft directly gold nanoparticles on SCO particles leading to hybridparticles denoted SCO@Au. This grafting seems to be more effective than previous resultsand shows itself relevant for a wide range of size of gold particles

    Rational and exploratory design of spin-crossover nanoparticles

    No full text
    Les matĂ©riaux Ă  transition de spin (TS) Ă  base de Fe(II) et de ligands triazolepeuvent changer d’état de spin sous l’effet d’une perturbation extĂ©rieure telle que latempĂ©rature, la pression ou l’irradiation lumineuse. Si ces aspects sont bien connus, ce n’estque depuis quelques annĂ©es que le design des particules Ă  TS connait un vĂ©ritable essor avecpour objectif principal de crĂ©er de larges gammes de tailles et de formes de nanoparticules.C’est dans ce contexte que nous avons rationnalisĂ©, grĂące Ă  un examen scrupuleux de tousles paramĂštres expĂ©rimentaux, la synthĂšse par micelles inverses afin d’élaborer des particulesĂ  TS de tailles et de morphologies contrĂŽlĂ©es. Par exemple, dans des conditionsexpĂ©rimentales bien dĂ©finies, nous pouvons dĂ©sormais offrir un panel de tailles de particulesen forme de bĂątonnet allant de 30 Ă  1000 nm pour le composĂ© [Fe(Htrz)2(trz)](BF4). EnparallĂšle nous avons conduit la toute premiĂšre exploration, pour les matĂ©riaux Ă  TS, de lasynthĂšse par spray-drying. Des particules sphĂ©riques de tailles micromĂ©triques prĂ©sentant despropriĂ©tĂ©s diffĂ©rentes de celles observĂ©es habituellement ont alors Ă©tĂ© obtenues. L’un deschallenges actuels du design des particules Ă  TS concerne le greffage de particules d’or. Al’encontre des rĂ©sultats actuels de la littĂ©rature, nous proposons ici une mĂ©thode de greffagedirect de nanoparticules d’or sur celles Ă  TS conduisant Ă  des particules hybrides de typeTS@Au. Ce greffage apparaĂźt plus efficace que ce qui Ă©tait connu jusqu’à prĂ©sent et, desurcroĂźt, se rĂ©vĂšle pertinent pour une large gamme de taille des particules d’or.The spin-crossover (SCO) materials based on iron (II) and triazole ligands canchange their spin state under an external perturbation like temperature, pressure or lightirradiation. If these aspects are well known, it is only in the recent years that the SCO-particledesign has attracted attention of the scientific community with increasing interests notablyfocusing on the access to wide ranges of sizes and shapes of nanoparticles. In this context,we rationalized the reverse micellar synthesis, thanks to a scrupulous study of all experimentalparameters, to produce SCO particles with controlled size and shape. For example, underwell-defined experimental conditions, we can now offer rod-shaped particles with sizes rangingfrom 30 to 1000 nm for [Fe(Htrz)2(trz)](BF4). In parallel, we drove the first exploration byspray-drying for SCO materials. Spherical-micrometric particles with different properties, fromthose observed usually, were obtained. Within the design of SCO particles, one of the currentchallenges concerns the grafting of gold particles. In contrast to existing literature results, wepropose a method to graft directly gold nanoparticles on SCO particles leading to hybridparticles denoted SCO@Au. This grafting seems to be more effective than previous resultsand shows itself relevant for a wide range of size of gold particles

    Rational and exploratory design of spin-crossover nanoparticles

    No full text
    Les matĂ©riaux Ă  transition de spin (TS) Ă  base de Fe(II) et de ligands triazolepeuvent changer d’état de spin sous l’effet d’une perturbation extĂ©rieure telle que latempĂ©rature, la pression ou l’irradiation lumineuse. Si ces aspects sont bien connus, ce n’estque depuis quelques annĂ©es que le design des particules Ă  TS connait un vĂ©ritable essor avecpour objectif principal de crĂ©er de larges gammes de tailles et de formes de nanoparticules.C’est dans ce contexte que nous avons rationnalisĂ©, grĂące Ă  un examen scrupuleux de tousles paramĂštres expĂ©rimentaux, la synthĂšse par micelles inverses afin d’élaborer des particulesĂ  TS de tailles et de morphologies contrĂŽlĂ©es. Par exemple, dans des conditionsexpĂ©rimentales bien dĂ©finies, nous pouvons dĂ©sormais offrir un panel de tailles de particulesen forme de bĂątonnet allant de 30 Ă  1000 nm pour le composĂ© [Fe(Htrz)2(trz)](BF4). EnparallĂšle nous avons conduit la toute premiĂšre exploration, pour les matĂ©riaux Ă  TS, de lasynthĂšse par spray-drying. Des particules sphĂ©riques de tailles micromĂ©triques prĂ©sentant despropriĂ©tĂ©s diffĂ©rentes de celles observĂ©es habituellement ont alors Ă©tĂ© obtenues. L’un deschallenges actuels du design des particules Ă  TS concerne le greffage de particules d’or. Al’encontre des rĂ©sultats actuels de la littĂ©rature, nous proposons ici une mĂ©thode de greffagedirect de nanoparticules d’or sur celles Ă  TS conduisant Ă  des particules hybrides de typeTS@Au. Ce greffage apparaĂźt plus efficace que ce qui Ă©tait connu jusqu’à prĂ©sent et, desurcroĂźt, se rĂ©vĂšle pertinent pour une large gamme de taille des particules d’or.The spin-crossover (SCO) materials based on iron (II) and triazole ligands canchange their spin state under an external perturbation like temperature, pressure or lightirradiation. If these aspects are well known, it is only in the recent years that the SCO-particledesign has attracted attention of the scientific community with increasing interests notablyfocusing on the access to wide ranges of sizes and shapes of nanoparticles. In this context,we rationalized the reverse micellar synthesis, thanks to a scrupulous study of all experimentalparameters, to produce SCO particles with controlled size and shape. For example, underwell-defined experimental conditions, we can now offer rod-shaped particles with sizes rangingfrom 30 to 1000 nm for [Fe(Htrz)2(trz)](BF4). In parallel, we drove the first exploration byspray-drying for SCO materials. Spherical-micrometric particles with different properties, fromthose observed usually, were obtained. Within the design of SCO particles, one of the currentchallenges concerns the grafting of gold particles. In contrast to existing literature results, wepropose a method to graft directly gold nanoparticles on SCO particles leading to hybridparticles denoted SCO@Au. This grafting seems to be more effective than previous resultsand shows itself relevant for a wide range of size of gold particles

    Rational and exploratory design of spin-crossover nanoparticles

    No full text
    Les matĂ©riaux Ă  transition de spin (TS) Ă  base de Fe(II) et de ligands triazolepeuvent changer d’état de spin sous l’effet d’une perturbation extĂ©rieure telle que latempĂ©rature, la pression ou l’irradiation lumineuse. Si ces aspects sont bien connus, ce n’estque depuis quelques annĂ©es que le design des particules Ă  TS connait un vĂ©ritable essor avecpour objectif principal de crĂ©er de larges gammes de tailles et de formes de nanoparticules.C’est dans ce contexte que nous avons rationnalisĂ©, grĂące Ă  un examen scrupuleux de tousles paramĂštres expĂ©rimentaux, la synthĂšse par micelles inverses afin d’élaborer des particulesĂ  TS de tailles et de morphologies contrĂŽlĂ©es. Par exemple, dans des conditionsexpĂ©rimentales bien dĂ©finies, nous pouvons dĂ©sormais offrir un panel de tailles de particulesen forme de bĂątonnet allant de 30 Ă  1000 nm pour le composĂ© [Fe(Htrz)2(trz)](BF4). EnparallĂšle nous avons conduit la toute premiĂšre exploration, pour les matĂ©riaux Ă  TS, de lasynthĂšse par spray-drying. Des particules sphĂ©riques de tailles micromĂ©triques prĂ©sentant despropriĂ©tĂ©s diffĂ©rentes de celles observĂ©es habituellement ont alors Ă©tĂ© obtenues. L’un deschallenges actuels du design des particules Ă  TS concerne le greffage de particules d’or. Al’encontre des rĂ©sultats actuels de la littĂ©rature, nous proposons ici une mĂ©thode de greffagedirect de nanoparticules d’or sur celles Ă  TS conduisant Ă  des particules hybrides de typeTS@Au. Ce greffage apparaĂźt plus efficace que ce qui Ă©tait connu jusqu’à prĂ©sent et, desurcroĂźt, se rĂ©vĂšle pertinent pour une large gamme de taille des particules d’or.The spin-crossover (SCO) materials based on iron (II) and triazole ligands canchange their spin state under an external perturbation like temperature, pressure or lightirradiation. If these aspects are well known, it is only in the recent years that the SCO-particledesign has attracted attention of the scientific community with increasing interests notablyfocusing on the access to wide ranges of sizes and shapes of nanoparticles. In this context,we rationalized the reverse micellar synthesis, thanks to a scrupulous study of all experimentalparameters, to produce SCO particles with controlled size and shape. For example, underwell-defined experimental conditions, we can now offer rod-shaped particles with sizes rangingfrom 30 to 1000 nm for [Fe(Htrz)2(trz)](BF4). In parallel, we drove the first exploration byspray-drying for SCO materials. Spherical-micrometric particles with different properties, fromthose observed usually, were obtained. Within the design of SCO particles, one of the currentchallenges concerns the grafting of gold particles. In contrast to existing literature results, wepropose a method to graft directly gold nanoparticles on SCO particles leading to hybridparticles denoted SCO@Au. This grafting seems to be more effective than previous resultsand shows itself relevant for a wide range of size of gold particles

    Grafting of gold onto spin-crossover nanoparticles: SCO@Au

    No full text
    Nanoparticles of gold were successfully grafted onto nanoparticles of a 1D polymeric spin-crossover material leading to singular SCO@Au hybrid particles. The result is equally obtained using a large range of gold-particle sizes, from 4 to 45 nm, which first allows definition of the best experimental conditions, notably in terms of gold-particle concentration, and then demonstrates the robustness and the efficiency of the method.ÉlĂ©ments de mĂ©moires multifonctionnels utilisant des connections supramolĂ©culaires auto assemblĂ©esInitiative d'excellence de l'UniversitĂ© de BordeauxEtude femtoseconde rayons X et optique de la dynamique ultrarapide de photocommutation de matĂ©riaux molĂ©culaires magnĂ©tique

    Rational control spin-crossover particle size: from nano- to micro-rods of [Fe(Htrz)2(trz)] (BF4)

    No full text
    The spin-crossover (SCO) materials based on iron (II) and triazole ligands can change their spin state under an external perturbation such as temperature, pressure or light irradiation, exhibiting notably large hysteresis in their physical properties’ transitions. If these aspects are investigated for decades, it is only in the recent years that the design of SCO particles has attracted the attention of the scientific community with increasing interest focusing on the possibility of getting wide ranges of sizes and shapes of nanoparticles. In this context, we rationalized the reverse-micellar synthesis, thanks to the scrutiny of the experimental parameters, to produce SCO particles with controlled size and shape. This approach has been performed for the reference one-dimensional (1D) polymeric spin-crossover compound of formula [Fe(Htrz)2(trz)](BF4). A synergetic effect of both time and temperature is revealed as being of paramount importance to control the final particle size. Consequently, under well-defined experimental conditions, we can now offer rod-shaped SCO particles with lengths ranging from 75 to 1000 nm.ÉlĂ©ments de mĂ©moires multifonctionnels utilisant des connections supramolĂ©culaires auto assemblĂ©e
    corecore