1,244 research outputs found

    Climatic and Biotic Events of the Paleogene 2014, CBEP 2014

    Get PDF
    This special issue include the scientific contributes, short notes and abstracts, presented at the International Meeting: Climatic and Biotic Events of the Paleogene, CBEP 2014, held in Ferrara, Italy, July, 1-6, 2014, 10 thematic sessions. More than 140 participants from 20 countries attended the meeting, included the most famous experts. the http://web.fe.infn.it/cbep2014

    Planktic foraminiferal response to early Eocene carbon cycle perturbations in the southeast Atlantic Ocean (ODP Site 1263)

    Get PDF
    At low latitude locations in the northern hemisphere, striking changes in the relative abundances and diversity of the two dominant planktic foraminifera genera, Morozovella and Acarinina, are known to have occurred close to the Early Eocene Climatic Optimum (EECO; ~ 49–53 Ma). Lower Eocene carbonate-rich sediments at Ocean Drilling Program (ODP) Site 1263 were deposited on a bathymetric high (Walvis Ridge) at ~ 40° S, and afford an opportunity to examine such planktic foraminiferal assemblage changes in a temperate southern hemisphere setting. We present here quantified counts of early Eocene planktic foraminiferal assemblages from Hole 1263B, along with bulk sediment stable isotope analyses and proxy measurements for carbonate dissolution. The bulk sediment δ13C record at Site 1263 resembles similar records generated elsewhere, such that known and inferred hyperthermal events can be readily identified. Although some carbonate dissolution has occurred, the well-preserved planktic foraminiferal assemblages mostly represent primary changes in environmental conditions. Our results document the permanent decrease in Morozovella abundance and increase in Acarinina abundance at the beginning of the EECO, although this switch occurred ~ 165 kyr after that at low-latitude northern hemisphere locations. This suggests that unfavourable environmental conditions for morozovellids at the start of the EECO, such as sustained passage of a temperature threshold or other changes in surface waters, occurred at lower latitudes first. The remarkable turnover from Morozovella to Acarinina was widely geographically widespread, although the causal mechanism remains elusive. In addition, at Site 1263, we document the virtual disappearance within the EECO of the biserial chiloguembelinids, commonly considered as inhabiting intermediate water depths, and a reduction in abundance of the thermocline-dwelling subbotinids. We interpret these changes as signals of subsurface water properties, perhaps warming, and the associated contraction of ecological niches

    Dextral to sinistral coiling switch in planktic foraminifer Morozovella during the Early Eocene Climatic Optimum

    Get PDF
    Coiling direction is a basic characteristic of trochospiral planktic foraminifera. Modifications in the coiling direction within ancient planktic foraminiferal populations may reflect important changes in evolution or environment, yet they remain scarcely discussed. Here we investigate fluctuations in the coiling direction within Morozovella assemblages from sections that span the interval of peak Cenozoic warmth, the Early Eocene Climatic Optimum (EECO; ~53-49 million years ago, Ma), at Atlantic Ocean Drilling Program (ODP) sites 1051, 1258 and 1263. The surface-dwelling genus Morozovella is of particular interest because it dominated tropical-subtropical early Paleogene assemblages then suffered an abrupt and permanent decline in abundance and taxonomic diversity at the start of the EECO. At all ODP sites, morozovellids display a dominant dextral coiling preference during the interval preceding the EECO. However, all the Morozovella species at all sites modify their coiling from preferentially dextral to sinistral coiling within the EECO < 200 kyr after the K/X event (~52.8 Ma), providing a new biostratigraphic tool for correlation. We also document that before the major shift in morozovellid coiling, transient excursions to higher abundances of sinistral tests occurred in conjunction with negative carbon isotope excursions. Significantly, carbon isotope data reveal that sinistral morphotypes belonging to the same morphospecies typically have lower 13C values. The dominance of sinistral morphotypes, at the expense of dextral forms within the EECO, coupled with the lower 13C signatures of the former, suggests that the sinistral forms were less dependent on their photosymbiotic partnerships and thus able to adapt more readily to paleoceanographic change at the EECO. The observed sinistral and dextral coiling of morozovellids can be a genetically heritable characteristic that lies within cryptic speciation across multiple morphologically defined species. Alternatively the coiling changes were exclusively ecophenotypic responses whereby different species were able to preferentially adopt sinistral coiling in reaction to the changed conditions in the mixed-layer during the EECO. Previous interpretations of coiling flips in planktic foraminifera in the early Eocene, especially including morozovellids, have favoured a genetic explanation rather than an ecological response. Our present data cannot validate or disprove this idea, but should stimulate renewed thought on the matter

    Organic Carbon Burial following the Middle Eocene Climatic Optimum (MECO) in the central - western Tethys

    No full text
    We present trace metal geochemistry and stable isotope records for the middle Eocene Alano di Piave section, NE Italy, deposited during magnetochron C18n in the marginal Tethys Ocean. We identify a \sim 500 kyr long carbon isotope perturbation event we infer to be the middle Eocene Climatic Optimum (MECO) confirming the northern hemisphere expression and global occurrence of MECO. Interpreted peak climatic conditions are followed by the rapid deposition of two organic rich intervals (\le3\% TOC) and contemporaneous positive δ13\delta^{13}C excursions. These two intervals are associated with increases in the concentration of sulphur and redox-sensitive trace metals, and low concentrations of Mn, as well as coupled with the occurrence of pyrite. Together these changes imply low, possibly dysoxic, bottom water O2_{2} conditions promoting increased organic carbon burial. We hypothesize that this rapid burial of organic carbon lowered global {\it p}CO2_{2} following the peak warming and returned the climate system to the general Eocene cooling trend

    Demise of the Planktic Foraminifer genus Morozovella during the Early Eocene Climatic Optimum: new records from ODP Site 1258 (Demerara Rise, western equatorial Atlantic) and Site 1263 (Walvis Ridge, South Atlantic)

    Get PDF
    Here we present relative abundances of planktic foraminifera that span the Early Eocene Climatic Optimum (EECO) at Ocean Drilling Program (ODP) Site 1258 in the western equatorial Atlantic. The EECO (~53.3−49.1 Ma) represents peak Cenozoic warmth, probably related to high atmospheric CO2, and when planktic foraminifera, a dominant component of marine sediment, exhibit a major biotic response. Consistent with previous work, the relative abundance of the genus Morozovella, which dominated early Paleogene tropical-subtropical assemblages, markedly and permanently declined from a mean percentage of ~32% to less than ~7% at the beginning of the EECO. The distinct decrease in Morozovella abundance occurred at Site 1258 within ~20 kyr before a negative excursion in δ13C records known as the J event and which defines the beginning of EECO. Moreover, all morozovellid species except M. aragonensis dropped in abundance permanently at Site 1258, and this is related to a reduction in test-size. Comparing our data with that from other locations, the remarkable switch in planktonic foraminifera assemblages appears to have begun first with unfavourable environmental conditions near the Equator and then extended to higher latitudes. Several potential stressors may explain observations, including some combination of algal photosymbiont inhibition (bleaching), a sustained increase in temperature, or an extended decrease in pH

    Can be gravitational waves markers for an extra-dimension?

    Full text link
    The main issue of the present letter is to fix specific features (which turn out being independent of extradimension size) of gravitational waves generated before a dimensional compactification process. Valuable is the possibility to detect our prediction from gravitational wave experiment without high energy laboratory investigation. In particular we show how gravitational waves can bring information on the number of Universe dimensions. Within the framework of Kaluza-Klein hypotheses, a different morphology arises between waves generated before than the compactification process settled down and ordinary 4-dimensional waves. In the former case the scalar and tensor degrees of freedom can not be resolved. As a consequence if were detected gravitational waves having the feature here predicted (anomalous polarization amplitudes), then they would be reliable markers for the existence of an extra dimension.Comment: 5 pages, two figure, to appear on Int. Journ. Mod. Phys.

    Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversion

    Get PDF
    Indexed left atrial volume, C-reactive protein and erythrocyte sedimentation rate as predictors of recurrence of non-valvular atrial fibrillation after successful cardioversio
    corecore