6 research outputs found

    Dendritic cell functions in the inductive and effector sites of intestinal immunity

    No full text
    International audienceThe intestine is constantly exposed to foreign antigens, which are mostly innocuous but can sometimes be harmful. Therefore, the intestinal immune system has the delicate task of maintaining immune tolerance to harmless food antigens while inducing tailored immune responses to pathogens and regulating but tolerating the microbiota. Intestinal dendritic cells (DCs) play a central role in these functions as sentinel cells able to prime and polarize the T cell responses. DCs are deployed throughout the intestinal mucosa but with local specializations along the gut length and between the diffuse effector sites of the gut lamina propria (LP) and the well-organized immune inductive sites comprising isolated lymphoid follicles (ILFs), Peyer's patches (PPs), and other species-specific gut-associated lymphoid tissues (GALTs). Understanding the specificities of each intestinal DC subset, how environmental factors influence DC functions, and how these can be modulated is key to harnessing the therapeutic potential of mucosal adaptive immune responses, whether by enhancing the efficacy of mucosal vaccines or by increasing tolerogenic responses in inflammatory disorders. In this review, we summarize recent findings related to intestinal DCs in steady state and upon inflammation, with a special focus on their functional specializations, highly dependent on their microenvironment

    Localization and relative quantification of carbon nanotubes in cells with multispectral imaging flow cytometry.

    Get PDF
    International audienceCarbon-based nanomaterials, like carbon nanotubes (CNTs), belong to this type of nanoparticles which are very difficult to discriminate from carbon-rich cell structures and de facto there is still no quantitative method to assess their distribution at cell and tissue levels. What we propose here is an innovative method allowing the detection and quantification of CNTs in cells using a multispectral imaging flow cytometer (ImageStream, Amnis). This newly developed device integrates both a high-throughput of cells and high resolution imaging, providing thus images for each cell directly in flow and therefore statistically relevant image analysis. Each cell image is acquired on bright-field (BF), dark-field (DF), and fluorescent channels, giving access respectively to the level and the distribution of light absorption, light scattered and fluorescence for each cell. The analysis consists then in a pixel-by-pixel comparison of each image, of the 7,000-10,000 cells acquired for each condition of the experiment. Localization and quantification of CNTs is made possible thanks to some particular intrinsic properties of CNTs: strong light absorbance and scattering; indeed CNTs appear as strongly absorbed dark spots on BF and bright spots on DF with a precise colocalization. This methodology could have a considerable impact on studies about interactions between nanomaterials and cells given that this protocol is applicable for a large range of nanomaterials, insofar as they are capable of absorbing (and/or scattering) strongly enough the light

    Intercellular carbon nanotube translocation assessed by flow cytometry imaging.

    No full text
    International audienceThe fate of carbon nanotubes in the organism is still controversial. Here, we propose a statistical high-throughput imaging method to localize and quantify functionalized multiwalled carbon nanotubes in cells. We give the first experimental evidence of an intercellular translocation of carbon nanotubes. This stress-induced longitudinal transfer of nanomaterials is mediated by cell-released microvesicles known as vectors for intercellular communication. This finding raises new critical issues for nanotoxicology, since carbon nanotubes could be disseminated by circulating extracellular cell-released vesicles and visiting several cells in the course of their passage into the organism
    corecore