21 research outputs found

    Assessment of the bacterial community structure in a Brazilian clay soil treated with atrazine

    Get PDF
    In the present paper, the bacterial communities in two soils, one from an agricultural sugarcane cropped field and the other from an unperturbed soil with similar geopedological characteristics, were characterized using the Fluorescence In Situ Hybridization (FISH) method. FISH consists of in situ identification of bacteria using fluorescent labeled 16S rRNA targeted oligonucleotide probes visualizable under epifluorescence microscope. In the cultivated soil, in line with agricultural practice, the pre-emergence herbicide atrazine had been regularly applied each year at a concentration of 5 L/ha. The Shannon Diversity and Evenness Indices were also calculated using the phylogenetic data obtained from the FISH analysis. Although, at the sampling time (6 months after soil atrazine treatment), no residual herbicide concentration was found, the overall bacterial community results show a lower diversity and evenness in the agricultural soil than in the unperturbed one, demonstrating how microbiological indicators are sensitive to anthropogenic disturbance. In the natural soil, the dominant groups were α-Proteobacteria, β-Proteobacteria, and γ-Proteobacteria (representing more than 50 % of the bacteria), but in the agricultural soil, their abundance decreased significantly and represented just 31 % of the bacteria domain

    New aspects on atrazine biodegradation

    Get PDF
    The world practice of using agrochemicals for long periods, in an indiscriminated and abusive way, has been a concern of the authorities involved in public health and sustainability of the natural resources, as a consequence of environmental contamination. Agrochemicals refer to a broad range of insecticides, fungicides and herbicides, and among them stands out atrazine, a herbicide intensively used in sugarcane, corn and sorghum cultures, among others. Researches have demonstrated that atrazine has toxic effects in algae, aquatic plants, aquatic insects, fishes and mammals. Due to the toxicity and persistence of atrazine in the environment, the search of microbial strains capable of degrading it is fundamental to the development of bioremediation processes, as corrective tools to solve the current problems of the irrational use of agrochemicals. This review relates the main microbial aspects and research on atrazine degradation by isolated microbial species and microbial consortia, as well as approaches on the development of techniques for microbial removal of atrazine in natural environments

    Especiação e seus mecanismos: histórico conceitual e avanços recentes

    Full text link

    Valorization of sunflower meal through the production of ethanol from the hemicellulosic fraction

    No full text
    ABSTRACT Sunflower is among the major oil seeds crop grown in the world and the by-products generated during the seeds processing represent an attractive source of lignocellulosic biomass for bioprocesses. The conversion of lignocellulosic fibers into fermentable sugars has been considered as a promising alternative to increase the demand for ethanol. The present study aimed to establish the fermentation conditions for ethanol production by Scheffersomyces stipitis ATCC 58376 in sunflower meal hemicellulosic hydrolysate, through a 23 CCRD (Central Composite Rotational Design) factorial design. Under the selected conditions (pH 5.25, 29 ºC and 198 rpm) the final ethanol concentration was 13.92 g L-1 and the ethanol yield was 0.49 g g-1

    Vanillin production by recombinant strains of Escherichia coli Produção de vanilina por linhagens recombinantes de Escherichia coli

    No full text
    Vanillin production from ferulate was studied using different recombinant strains of Escherichia coli. To prevent the occurrence of aerobic conditions and then possible product oxidation, tests were performed in Erlenmeyer flasks under mild mixing (150 rpm). Among other transformants, E. coli JM109(pBB1) appeared to be the best vanillin producer, being able to convert no less than 95% of starting ferulate to the product within 1h. This yield decreased down to 72% after 72h, likely because of a non-specific oxidase activity responsible for vanillin oxidation to vanillate.<br>A produção de vanilina a partir de ácido ferúlico foi estudada utilizando-se diferentes linhagens recombinantes de Escherichia coli. Para prevenir a ocorrência de condições de aerobiose e a possível oxidação do produto, os ensaios foram realizados em frascos Erlenmeyer sob agitação moderada (150 rpm). E. coli JM109 (pBBI) mostrou-se o melhor produtor de vanilina entre os demais agentes transformantes, sendo capaz de converter 95% do ácido ferúlico inicial em produto após 1h, rendimento este que decresceu para 72% após 72h, provavelmente devido à atividade de uma oxidase não-específica responsável pela oxidação de vanilina a ácido vanílico
    corecore