26 research outputs found

    Silver nanoparticles-composing alginate/gelatine hydrogel improves wound healing in vivo

    Get PDF
    Polymer hydrogels have been suggested as dressing materials for the treatment of cutaneous wounds and tissue revitalization. In this work, we report the development of a hydrogel composed of natural polymers (sodium alginate and gelatin) and silver nanoparticles (AgNPs) with recognized antimicrobial activity for healing cutaneous lesions. For the development of the hydrogel, different ratios of sodium alginate and gelatin have been tested, while different concentrations of AgNO3 precursor (1.0, 2.0, and 4.0 mM) were assayed for the production of AgNPs. The obtained AgNPs exhibited a characteristic peak between 430450 nm in the ultraviolet-visible (UVVis) spectrum suggesting a spheroidal form, which was confirmed by Transmission Electron Microscopy (TEM). Fourier Transform Infra-red (FTIR) analysis suggested the formation of strong intermolecular interactions as hydrogen bonds and electrostatic attractions between polymers, showing bands at 2920, 2852, 1500, and 1640 cm1. Significant bactericidal activity was observed for the hydrogel, with a Minimum Inhibitory Concentration (MIC) of 0.50 µg/mL against Pseudomonas aeruginosa and 53.0 µg/mL against Staphylococcus aureus. AgNPs were shown to be non-cytotoxic against fibroblast cells. The in vivo studies in female Wister rats confirmed the capacity of the AgNP-loaded hydrogels to reduce the wound size compared to uncoated injuries promoting histological changes in the healing tissue over the time course of wound healing, as in earlier development and maturation of granulation tissue. The developed hydrogel with AgNPs has healing potential for clinical applications.This research received funding from the Coordenação Aperfeiçoamento de Pessoal de Nivel Superior (CAPES), Fundação de Amparo à Pesquisa do Estado de Sergipe (FAPITEC), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, #443238/2014-6, #470388/2014-5), and from the Portuguese Science and Technology Foundation (FCT) projects M-ERA-NET/0004/2015 (PAIRED) and UIDB/04469/2020 (strategic fund).info:eu-repo/semantics/publishedVersio

    Brazilian red propolis: extracts production, physicochemical characterization, and cytotoxicity profile for antitumor activity

    Get PDF
    Brazilian red propolis has been proposed as a new source of compounds with cytotoxic activity. Red propolis is a resinous material of vegetal origin, synthesized from the bees of the Appis mellifera family, with recognized biological properties. To obtain actives of low polarity and high cytotoxic profile from red propolis, in this work, we proposed a new solvent accelerated extraction method. A complete 23 factorial design was carried out to evaluate the influence of the independent variables or factors (e.g., temperature, number of cycles, and extraction time) on the dependent variable or response (i.e., yield of production). The extracts were analyzed by gas chromatography coupled with mass spectrometry for the identification of chemical compounds. Gas chromatography analysis revealed the presence of hydrocarbons, alcohols, ketones, ethers, and terpenes, such as lupeol, lupenone, and lupeol acetate, in most of the obtained extracts. To evaluate the cytotoxicity profile of the obtained bioactives, the 3-(4,5-dimethyl-2-thiazole)-2,5-diphenyl-2-H-tetrazolium bromide colorimetric assay was performed in different tumor cell lines (HCT116 and PC3). The results show that the extract obtained from 70 °C and one cycle of extraction of 10 min exhibited the highest cytotoxic activity against the tested cell lines. The highest yield, however, did not indicate the highest cytotoxic activity, but the optimal extraction conditions were indeed dependent on the temperature (i.e., 70 °C).FCT -Fundação para a Ciência e a Tecnologia(UIDB/04469/2020)info:eu-repo/semantics/publishedVersio
    corecore