172 research outputs found

    Probing the local temperature of a 2DEG microdomain with a quantum dot: measurement of electron-phonon interaction

    Get PDF
    We demonstrate local detection of the electron temperature in a two-dimensionalmicrodomain using a quantum dot. Our method relies on the observation that a temperature bias across the dot changes the functional form of Coulomb-blockade peaks. We apply our results to the investigation of electron-energy relaxation at subkelvin temperatures, find that the energy flux from electrons into phonons is proportional to the fifth power of temperature, and give a measurement of the coupling constant.Comment: 5 pages, 4 figure

    Hybrid InAs nanowire-vanadium proximity SQUID

    Full text link
    We report the fabrication and characterization of superconducting quantum interference devices (SQUIDs) based on InAs nanowires and vanadium superconducting electrodes. These mesoscopic devices are found to be extremely robust against thermal cycling and to operate up to temperatures of ∼2.5\sim2.5~K with reduced power dissipation. We show that our geometry allows to obtain nearly-symmetric devices with very large magnetic-field modulation of the critical current. All these properties make these devices attractive for on-chip quantum-circuit implementation.Comment: 3 pages, 3 figure

    Inter-edge strong-to-weak scattering evolution at a constriction in the fractional quantum Hall regime

    Full text link
    Gate-voltage control of inter-edge tunneling at a split-gate constriction in the fractional quantum Hall regime is reported. Quantitative agreement with the behavior predicted for out-of-equilibrium quasiparticle transport between chiral Luttinger liquids is shown at low temperatures at specific values of the backscattering strength. When the latter is lowered by changing the gate voltage the zero-bias peak of the tunneling conductance evolves into a minimum and a non-linear quasihole-like characteristic emerges. Our analysis emphasizes the role of the local filling factor in the split-gate constriction region.Comment: 4 pages, 4 figure

    Tuning non-linear charge transport between integer and fractional quantum Hall states

    Full text link
    Controllable point junctions between different quantum Hall phases are a necessary building block for the development of mesoscopic circuits based on fractionally-charged quasiparticles. We demonstrate how particle-hole duality can be exploited to realize such point-contact junctions. We show an implementation for the case filling factors ν=1\nu=1 and ν∗≤1\nu^*\le1 in which both the fractional filling ν∗\nu^* and the coupling strength can be finely and independently tuned. A peculiar crossover from insulating to conducting behavior as ν∗\nu^* goes from 1/3 to 1 is observed. These results highlight the key role played on inter-edge tunneling by local charge depletion at the point contact.Comment: 4 pages, 3 figures, suppl.ma

    Mapping of Axial Strain in InAs/InSb Heterostructured Nanowires

    Full text link
    The article presents a mapping of the residual strain along the axis of InAs/InSb heterostructured nanowires. Using confocal Raman measurements, we observe a gradual shift in the TO phonon mode along the axis of these nanowires. We attribute the observed TO phonon shift to a residual strain arising from the InAs/InSb lattice mismatch. We find that the strain is maximum at the interface and then monotonically relaxes towards the tip of the nanowires. We also analyze the crystal structure of the InSb segment through selected area electron diffraction measurements and electron diffraction tomography on individual nanowires.Comment: 14 pages, 5 figure

    Surface Nano-Patterning for the Bottom-Up Growth of III-V Semiconductor Nanowire Ordered Arrays

    Get PDF
    Ordered arrays of vertically aligned semiconductor nanowires are regarded as promising candidates for the realization of all-dielectric metamaterials, artificial electromagnetic materials, whose properties can be engineered to enable new functions and enhanced device performances with respect to naturally existing materials. In this review we account for the recent progresses in substrate nanopatterning methods, strategies and approaches that overall constitute the preliminary step towards the bottom-up growth of arrays of vertically aligned semiconductor nanowires with a controlled location, size and morphology of each nanowire. While we focus specifically on III-V semiconductor nanowires, several concepts, mechanisms and conclusions reported in the manuscript can be invoked and are valid also for different nanowire materials
    • …
    corecore