26 research outputs found

    Випологія синтаксичних конструкцій Π² Π½Ρ–ΠΌΠ΅Ρ†ΡŒΠΊΡ–ΠΉ Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΡ–ΠΉ ΠΌΠΎΠ²Π°Ρ…

    Get PDF
    ΠΡ–ΠΌΠ΅Ρ†ΡŒΠΊΠ° Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠ° ΠΌΠΎΠ²ΠΈ Ρ” односистСмними ΠΌΠΎΠ²Π°ΠΌΠΈ: ΠΎΠ±ΠΈΠ΄Π²Ρ– Π½Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΄ΠΎ Ρ–Π½Π΄ΠΎΡ”Π²Ρ€ΠΎΠΏΠ΅ΠΉΡΡŒΠΊΠΎΡ— ΠΌΠΎΠ²Π½ΠΎΡ— сім’ї. Π‘ΠΏΡ–Π»ΡŒΠ½Ρ– ΠΊΠΎΡ€Π΅Π½Ρ– Ρ‚Π° Ρ‚Ρ€ΠΈΠ²Π°Π»ΠΈΠΉ ΠΏΠ΅Ρ€Ρ–ΠΎΠ΄ Ρ–Π·ΠΎΠ»ΡŒΠΎΠ²Π°Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·Π²ΠΈΡ‚ΠΊΡƒ, Π²ΠΊΠ°Π·ΡƒΡŽΡ‚ΡŒ Π½Π° Ρ‚Π΅, Ρ‰ΠΎ Π²ΠΊΠ°Π·Π°Π½Ρ– ΠΌΠΎΠ²ΠΈ ΠΌΠ°ΡŽΡ‚ΡŒ характСристики подібності Ρ‚Π° відмінності Π² своій Π²Π½ΡƒΡ‚Ρ€Ρ–ΡˆΠ½Ρ–ΠΉ Π±ΡƒΠ΄ΠΎΠ²Ρ–. ΠΡ–ΠΌΠ΅Ρ†ΡŒΠΊΠ° Ρ‚Π° ΡƒΠΊΡ€Π°Ρ—Π½ΡΡŒΠΊΠ° Π½Π°Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π΄ΠΎ синтСтичного Ρ‚ΠΈΠΏΡƒ Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΈΡ… ΠΌΠΎΠ². Π¦Π΅ ΠΎΠ·Π½Π°Ρ‡Π°Ρ”, Ρ‰ΠΎ Π³Ρ€Π°ΠΌΠ°Ρ‚ΠΈΡ‡Π½Π΅ значСння слів Ρƒ Π½ΠΈΡ… Π²ΠΈΡ€Π°ΠΆΠ°Ρ”Ρ‚ΡŒΡΡ, Π·Π΄Π΅Π±Ρ–Π»ΡŒΡˆΠΎΠ³ΠΎ, Π·Π° допомогою систСми флСксій Ρ– Ρ€Π΅Π°Π»Ρ–Π·ΡƒΡ”Ρ‚ΡŒΡΡ Π² ΠΌΠ΅ΠΆΠ°Ρ… ΠΎΠ΄Π½ΠΎΠ³ΠΎ Π³Ρ€Π°Ρ„Ρ–Ρ‡Π½ΠΎΠ³ΠΎ слова. АлС Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Π° систСма Π½Ρ–ΠΌΠ΅Ρ†ΡŒΠΊΠΎΡ— ΠΌΠΎΠ²ΠΈ Π±Ρ–Π΄Π½Ρ–ΡˆΠ°, Π½Ρ–ΠΆ Ρƒ ΡΠ»ΠΎΠ²β€™ΡΠ½ΡΡŒΠΊΠΈΡ… ΠΌΠΎΠ²Π°Ρ….НСмСцкий ΠΈ украинский языки ΡΠ²Π»ΡΡŽΡ‚ΡΡ односистСмными языками: ΠΎΠ±Π° ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΊ индоСвропСйской языковой сСмьС. ΠžΠ±Ρ‰ΠΈΠ΅ ΠΊΠΎΡ€Π½ΠΈ ΠΈ Π΄Π»ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΏΠ΅Ρ€ΠΈΠΎΠ΄ ΠΈΠ·ΠΎΠ»ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ развития, ΡƒΠΊΠ°Π·Ρ‹Π²Π°ΡŽΡ‚ Π½Π° Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΠΊΠ°Π·Π°Π½Π½Ρ‹Π΅ языки ΠΈΠΌΠ΅ΡŽΡ‚ характСристики сходства ΠΈ различия Π² своСм Π²Π½ΡƒΡ‚Ρ€Π΅Π½Π½Π΅ΠΌ строСнии. НСмСцкий ΠΈ украинский ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠ°Ρ‚ ΠΊ синтСтичСскому Ρ‚ΠΈΠΏΡƒ Ρ„Π»Π΅ΠΊΡ‚ΠΈΠ²Π½Ρ‹Ρ… языков. Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ грамматичСскоС Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ слов Π² Π½ΠΈΡ… выраТаСтся, Π² основном, с ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ систСмы флСксий ΠΈ рСализуСтся Π² ΠΏΡ€Π΅Π΄Π΅Π»Π°Ρ… ΠΎΠ΄Π½ΠΎΠ³ΠΎ графичСского слова. Но флСктивная систСма Π½Π΅ΠΌΠ΅Ρ†ΠΊΠΎΠ³ΠΎ языка Π±Π΅Π΄Π½Π΅Π΅, Ρ‡Π΅ΠΌ Π² славянских языках.German and Ukrainian are single-system languages: both belong to the Indo-European language family. Common roots and a long period of isolated development, indicate that these languages ​​have characteristics of similarity and differences in their internal structure. German and Ukrainian belong to the synthetic type of inflectional languages. This means that the grammatical meaning of words in them is expressed, mainly, with the help of a system of inflexions and is realized within a single graphic word. But the inflectional system of the German language is poorer than in the Slavic languages

    Flow-chart of the subjects at risk of CD from south Italy.

    No full text
    <p>Characteristics, age and presence/absence of HLA-DQ2/DQ8 in a population at risk of CD (relatives of CD- and with CD-like symptoms subjects) attending the Department of Laboratory Medicine of the University of Naples Federico II/CEINGE-Center of Advanced Biotechnology (Naples, Italy) between 2003 and 2013.</p

    Frequencies of HLA-DQ genotypes (A) and haplotypes (B) detected in 666 CD patients from south Italy.

    No full text
    <p>CD, celiac disease</p><p><sup>a</sup>Genotypes were based on the presence of the following haplotypes: DQ2.5 = DQA1*05-DQB1*02 (DRB1*03) alleles; DQ2.2 = DQA1*02-DQB1*02 (DRB1*07) alleles; DQ2.3 = DQA1*03-DQB1*02 (DRB1*04/09/11) alleles; DQ8 = DQA1*03-DQB1*0302 (DRB1*04) alleles</p><p><sup>b</sup>Statistically significant differences, <i>p</i><0.001 at Ο‡<sup>2</sup> test between males (M) and females (F)</p><p><sup>c</sup>DQX refers to: DQ7 = DQB1*0301 (DRB1*11/12/X) alleles; DQ4, DQ5, DQ6 and DQ9, were assigned if DQB1*04, DQB1*05, DQB1*06 and DQB1*0303 alleles were present, respectively</p><p><sup>d</sup>Statistically significant differences, <i>p</i><0.05 at Ο‡<sup>2</sup> test, between DQ2/DQ8 (+) and DQ2/DQ8 (-) CD patients</p><p>Frequencies of HLA-DQ genotypes (A) and haplotypes (B) detected in 666 CD patients from south Italy.</p

    Frequencies of HLA-DQ genotypes (A) and haplotypes (B) detected in unaffected subjects (n = 4869) from south Italy.

    No full text
    <p>CD, celiac disease</p><p><sup>a</sup>Genotypes were based on the presence of the following haplotypes: DQ2.5 = DQA1*05-DQB1*02 (DRB1*03) alleles; DQ2.2 = DQA1*02-DQB1*02 (DRB1*07) alleles; DQ2.3 = DQA1*03-DQB1*02 (DRB1*04/09/11) alleles; DQ8 = DQA1*03-DQB1*0302 (DRB1*04) alleles</p><p><sup>b</sup>Statistically significant differences between CD-relatives (n = 3662) and with CD-like symptoms (n = 1207) subjects; <i>p</i><0.001 at Ο‡<sup>2</sup> test</p><p><sup>c</sup>DQX refers to: DQ7 = DQB1*0301 (DRB1*11/12/X) alleles; DQ4, DQ5, DQ6 and DQ9, if DQB1*04, DQB1*05, DQB1*06 and DQB1*0303 alleles were present, respectively</p><p><sup>d</sup>Statistically significant differences, <i>p</i><0.001 at Ο‡<sup>2</sup> test, between DQ2/DQ8 (+) and DQ2/DQ8 (-) unaffected subjects.</p><p>Frequencies of HLA-DQ genotypes (A) and haplotypes (B) detected in unaffected subjects (n = 4869) from south Italy.</p

    Structural features of mutations p.Phe123Leu and p.Asp168Ala GCK.

    No full text
    <p>The structure of GCK in the closed form (PDB code: 1v4s) is represented by cyan ribbons. A) Mutation p.Phe123Leu. Phe123 is structured inside the hydrophobic core of the small domain. Yellow sticks represent hydrophobic residues that constitute the core. Phe123 and Leu123 are represented by red sticks (left and right panel, respectively). B) The sticks represent residue Thr168 and glucose. The right panels show a close-up view of the glucose-binding cleft for the wild-type (top) and for the Ala168 mutant (bottom).</p

    Structural features of mutations p.His137Asp, p.Arg392Ser and p.Gly162Asp GCK.

    No full text
    <p>The structure of GCK in the closed form (PDB code:1v4s) is shown as cyan ribbons. A) p.His137Asp. Loop 141–144, which is involved in GKRP binding, is in red. His137 is at the end of the Ξ±3 helix. His137 is a capping residue of the helix, which is terminated by the interaction between side chain of His137 and Phe133. Asp137 (right) is not able to replace His137 interactions but adds a new interaction with Lys104. B) p.Gly162Asp. Yellow sticks represent hydrophobic residues that constitute the core. The location of Gly162 is marked in red (left of the panel). Asp162 is on the right of the panel. C) p.Arg392Ser. Residues Asp42, Glu236, Asn240 and Arg392 are represented by yellow sticks. H-bonds are shown in green. The wild-type enzyme and the p.Arg392Ser mutant are on the left and right of the panel, respectively.</p

    Clinical and metabolic characteristics of pediatric patients from Southern Italy with suspected mitochondrial diabetes (nβ€Š=β€Š11)<sup>a</sup>.

    No full text
    a<p>Continuous variables are reported as median (2.5<sup>th</sup>–97.5<sup>th</sup> percentiles) and categorical variables as percentages;</p>b<p>BMI z scoreβ€Š=β€ŠBody mass index z score;</p>c<p>Mother and/or maternal relatives.</p

    Familial (F) pedigrees of the suspected mitochondrial diabetes patients enrolled in the study.

    No full text
    <p>The inclusion criteria were: Diabetes+at least one of the following: A) maternal heritability of diabetes or Impaired Fasting Glucose (IFG) and/or hearing impairment and/or maculopathy in three consecutive generations (or in two if there were 2–3 affected subjects/family); B) neurosensorial hearing impairment; and C) maculopathy. In each square it's reported the presence of the criteria (A, B and/or C) in the probands.</p

    Biochemical and phenotypic characteristics of the children affected by GCK MODY

    No full text
    a<p>BMI<i>z</i> scores: (calculated in children aged 2–18 years), see Materials and methods</p>b<p>FPG: Fasting plasma glucose; (impaired fasting glucose [IFG]β€Š=β€Š5.6–6.9 mmol/L; diabetes mellitus [DM]β€Š=β€Šβ‰₯7.0 mmol/L)</p>c<p>OGTT: Oral glucose tolerance test (normal glucose tolerance [NGT] <7.8 mmol/L; impaired glucose tolerance [IGT]β€Š=β€Š7.8–11.0 mmol/L; DMβ€Š=β€Šβ‰₯11.1 mmol/L)</p>d<p>FPIR: First phase insulin response (reference value: β‰₯60.0 Β΅U/ml)</p>e<p>HbA1c: glycosylated haemoglobin (reference value: 4.3–5.9%)</p>f<p>Not available because patient M002 was <2 years old</p>g<p>Not fasting nursling</p>n.a.<p>Not available</p
    corecore