165 research outputs found

    A scalable hardware and software control apparatus for experiments with hybrid quantum systems

    Get PDF
    Modern experiments with fundamental quantum systems - like ultracold atoms, trapped ions, single photons - are managed by a control system formed by a number of input/output electronic channels governed by a computer. In hybrid quantum systems, where two or more quantum systems are combined and made to interact, establishing an efficient control system is particularly challenging due to the higher complexity, especially when each single quantum system is characterized by a different timescale. Here we present a new control apparatus specifically designed to efficiently manage hybrid quantum systems. The apparatus is formed by a network of fast communicating Field Programmable Gate Arrays (FPGAs), the action of which is administrated by a software. Both hardware and software share the same tree-like structure, which ensures a full scalability of the control apparatus. In the hardware, a master board acts on a number of slave boards, each of which is equipped with an FPGA that locally drives analog and digital input/output channels and radiofrequency (RF) outputs up to 400 MHz. The software is designed to be a general platform for managing both commercial and home-made instruments in a user-friendly and intuitive Graphical User Interface (GUI). The architecture ensures that complex control protocols can be carried out, such as performing of concurrent commands loops by acting on different channels, the generation of multi-variable error functions and the implementation of self-optimization procedures. Although designed for managing experiments with hybrid quantum systems, in particular with atom-ion mixtures, this control apparatus can in principle be used in any experiment in atomic, molecular, and optical physics.Comment: 10 pages, 12 figure

    Design of a Littrow-type diode laser with independent control of cavity length and grating rotation

    Get PDF
    We present a novel, to the best of our knowledge, extended-cavity diode laser based on a modified Littrow configuration. The coarse wavelength adjustment via the rotation of a diffraction grating is decoupled from the fine tuning of the external cavity modes by positioning a piezo transducer behind the diode laser, making the laser robust against misalignment and hysteresis even with long external cavities. Two laser prototypes with external cavities of different lengths were tested with a 780 nm laser diode, and locked to an atomic reference. We observed a mode-hop-free frequency tunability broader than the free spectral range of the external cavity upon changes in its length. The design is well suited to atomic and molecular experiments demanding a high level of stability over time

    A compact radiofrequency drive based on interdependent resonant circuits for precise control of ion traps

    Get PDF
    Paul traps are widely used to confine electrically charged particles like atomic and molecular ions by using an intense radiofrequency (RF) field, typically obtained by a voltage drop on capacitative electrodes placed in vacuum. We present a RF drive realized on a compact printed circuit board (PCB) and providing a high-voltage RF signal to a quadrupole Paul trap. The circuit is formed by four interdependent resonant circuits −- each of which connected to an electrode of a Paul trap −- fed by low-noise amplifiers, leading to an output voltage of peak-to-peak amplitude up to 200 V at 3.23 MHz. The presence of a single resonant circuit for each electrode ensures a strong control on the voltage drop on each electrode, e.g. by applying a DC field through a bias tee. Additionally, the moderate quality factor Q = 67 of the resonant circuits ensures a fast operation of the drive, which can be turned on and off in less than 10 μ\mus. Finally, the RF lines are equipped with pick-ups that sample the RF in phase and amplitude, thus providing a signal that can be used to actively control the voltage drop at the trap's electrodes. Thanks to its features, this drive is particularly suited for experiments in which high trap stability and excellent micromotion compensation are required.Comment: 7 pages, 8 figure

    The high-voltage system for the LHCb RICH hybrid photon detectors

    Get PDF
    We describe the characterization of the high-voltage (HV) distribution system designed and produced for the pixel hybrid photon detectors of the ring imaging Cherenkov counters of the LHCb experiment. The HV system consists of a series of printed circuit boards with a specific layout designed to prevent any discharge arising from high electric fields. The system has dedicated monitoring and control features to supervise HV set-up during data taking. The full production of the HV system has been now completed and all the boards have been fully characterized and installed in the detector, which is currently being commissioned. © 2008 Elsevier B.V. All rights reserved

    Low-Molecular-Weight Protein Tyrosine Phosphatases of Bacillus subtilis

    Full text link
    In gram-negative organisms, enzymes belonging to the low-molecular-weight protein tyrosine phosphatase (LMPTP) family are involved in the regulation of important physiological functions, including stress resistance and synthesis of the polysaccharide capsule. LMPTPs have been identified also in gram-positive bacteria, but their functions in these organisms are presently unknown. We cloned two putative LMPTPs from Bacillus subtilis, YfkJ and YwlE, which are highly similar to each other in primary structure as well as to LMPTPs from gram-negative bacteria. When purified from overexpressing Escherichia coli strains, both enzymes were able to dephosphorylate p-nitrophenyl-phosphate and phosphotyrosine-containing substrates in vitro but showed significant differences in kinetic parameters and sensitivity to inhibitors. Transcriptional analyses showed that yfkJ was transcribed at a low level throughout the growth cycle and underwent a σB-dependent transcriptional upregulation in response to ethanol stress. The transcription of ywlE was growth dependent but stress insensitive. Genomic deletion of each phosphatase-encoding gene led to a phenotype of reduced bacterial resistance to ethanol stress, which was more marked in the ywlE deletion strain. Our study suggests that YfkJ and YwlE play roles in B. subtilis stress resistance

    Inside the "African Cattle Complex": Animal Burials in the Holocene Central Sahara

    Get PDF
    Cattle pastoralism is an important trait of African cultures. Ethnographic studies describe the central role played by domestic cattle within many societies, highlighting its social and ideological values well beyond its mere function as 'walking larder'. Historical depth of this African legacy has been repeatedly assessed in an archaeological perspective, mostly emphasizing a continental vision. Nevertheless, in- depth site-specific studies, with a few exceptions, are lacking. Despite the long tradition of a multi-disciplinary approach to the analysis of pastoral systems in Africa, rarely do early and middle Holocene archaeological contexts feature in the same area the combination of settlement, ceremonial and rock art features so as to be multi- dimensionally explored: the Messak plateau in the Libyan central Sahara represents an outstanding exception. Known for its rich Pleistocene occupation and abundant Holocene rock art, the region, through our research, has also shown to preserve the material evidence of a complex ritual dated to the Middle Pastoral (6080-5120 BP or 5200-3800 BC). This was centred on the frequent deposition in stone monuments of disarticulated animal remains, mostly cattle. Animal burials are known also from other African contexts, but regional extent of the phenomenon, state of preservation of monuments, and associated rock art makes the Messak case unique. GIS analysis, excavation data, radiocarbon dating, zooarchaeological and isotopic (Sr, C, O) analyses of animal remains and botanical data are used to explore this highly formalized ritual and lifestyles of a pastoral community in the Holocene Sahara

    Proteomics Reveals Novel Oxidative and Glycolytic Mechanisms in Type 1 Diabetic Patients' Skin Which Are Normalized by Kidney-Pancreas Transplantation

    Get PDF
    Background: In type 1 diabetes (T1D) vascular complications such as accelerated atherosclerosis and diffused macro-/microangiopathy are linked to chronic hyperglycemia with a mechanism that is not yet well understood. End-stage renal disease (ESRD) worsens most diabetic complications, particularly, the risk of morbidity and mortality from cardiovascular disease is increased several fold. Methods and Findings: We evaluated protein regulation and expression in skin biopsies obtained from T1D patients with and without ESRD, to identify pathways of persistent cellular changes linked to diabetic vascular disease. We therefore examined pathways that may be normalized by restoration of normoglycemia with kidney-pancreas (KP) transplantation. Using proteomic and ultrastructural approaches, multiple alterations in the expression of proteins involved in oxidative stress (catalase, superoxide dismutase 1, Hsp27, Hsp60, ATP synthase δ chain, and flavin reductase), aerobic and anaerobic glycolysis (ACBP, pyruvate kinase muscle isozyme, and phosphoglycerate kinase 1), and intracellular signaling (stratifin-14-3-3, S100-calcyclin, cathepsin, and PPI rotamase) as well as endothelial vascular abnormalities were identified in T1D and T1D+ESRD patients. These abnormalities were reversed after KP transplant. Increased plasma levels of malondialdehyde were observed in T1D and T1D+ESRD patients, confirming increased oxidative stress which was normalized after KP transplant. Conclusions: Our data suggests persistent cellular changes of anti-oxidative machinery and of aerobic/anaerobic glycolysis are present in T1D and T1D+ESRD patients, and these abnormalities may play a key role in the pathogenesis of hyperglycemia-related vascular complications. Restoration of normoglycemia and removal of uremia with KP transplant can correct these abnormalities. Some of these identified pathways may become potential therapeutic targets for a new generation of drugs
    • …
    corecore