10 research outputs found

    Th17-Gene Expression Profile in Patients with Chronic Venous Disease and Venous Ulcers: Genetic Modulations and Preliminary Clinical Evidence

    Get PDF
    Chronic venous disease is a condition globally widespread, resulting in a disabling pathological disorder. The CD4 + Th17+ (Cluster Differentiation 4) lymphocytes represent a regulative factor for innate immunity related to the development of complex diseases. Recently, these mechanisms have been associated with vascular disease. The aim of this work is to validate whether the Th17 response correlates with the development of CVI (Chronic venous insufficiency)and CVLUs (chronic venous limbs ulcers) and whether Th17 markers can be used, both as intrinsic risk factors and diagnostic markers, for disease development. PBL derived from peripheral blood samples of patients and controls were subjected to gene expression analysis for IL23R, IL17, SGK1, TGFβ, RORγ, FOXO1, and RANBP1 by qRT-PCR and immunoblot. A post hoc correlation, the diagnostic performance of the target genes, and multivariable analyses were properly conducted. The main expression markers of the CD4 + Th17+ switch were strongly activated in chronic venous insufficiency and in advanced ulceration. The correlation analysis demonstrated the inter-dependence on Th17’s signature modulation. ROC (Receiver Operating Characteristic) analysis defined, for the examined genes, a clinical value as the potential diagnostic markers. Multi-logistic regression studies showed that Th17 markers behave as empirical risk factors for CVD (chronic venous disease) development. Taken together, the present data provide a new hypothesis for the TH17-dependent pathogenesis of CVD, favoring the possibility for the development of new diagnostic, preventive, and therapeutic approaches

    RANBP1, a member of the nuclear-cytoplasmic trafficking-regulator complex, is the terminal-striking point of the SGK1-dependent Th17+ pathological differentiation

    Get PDF
    The Th17+ arrangement is critical for orchestrating both innate and acquired immune responses. In this context, the serum and glucocorticoid regulated kinase 1 (SGK1) exerts a key role in the governance of IL-23R-dependent Th17+ maturation, through the phosphorylation-dependent control of FOXO1 localization. Our previous work has shown that some of the SGK1-key functions are dependent on RAN-binding protein 1 (RANBP1), a terminal gene in the nuclear transport regulation. Here, we show that RANBP1, similarly to SGK1, is modulated during Th17+ differentiation and that RANBP1 fluctuations mediate the SGK1-dependent effects on Th17+ maturation. RANBP1, as the final effector of the SGK1 pathway, affects FOXO1 transport from the nucleus to the cytoplasm, thus enabling RORÎłt activation. In this light, RANBP1 represents the missing piece, in an essential and rate-limiting manner, underlying the Th17+ immune asset

    RANBP1 (RAN Binding Protein 1): The Missing Genetic Piece in Cancer Pathophysiology and Other Complex Diseases

    No full text
    RANBP1 encoded by RANBP1 or HTF9A (Hpall Tiny Fragments Locus 9A), plays regulatory functions of the RAN-network, belonging to the RAS superfamily of small GTPases. Through this function, RANBP1 regulates the RANGAP1 activity and, thus, the fluctuations between GTP-RAN and GDP-RAN. In the light of this, RANBP1 take actions in maintaining the nucleus–cytoplasmic gradient, thus making nuclear import–export functional. RANBP1 has been implicated in the inter-nuclear transport of proteins, nucleic acids and microRNAs, fully contributing to cellular epigenomic signature. Recently, a RANBP1 diriment role in spindle checkpoint formation and nucleation has emerged, thus constituting an essential element in the control of mitotic stability. Over time, RANBP1 has been demonstrated to be variously involved in human cancers both for the role in controlling nuclear transport and RAN activity and for its ability to determine the efficiency of the mitotic process. RANBP1 also appears to be implicated in chemo-hormone and radio-resistance. A key role of this small-GTPases related protein has also been demonstrated in alterations of axonal flow and neuronal plasticity, as well as in viral and bacterial metabolism and in embryological maturation. In conclusion, RANBP1 appears not only to be an interesting factor in several pathological conditions but also a putative target of clinical interest

    The Variant p.Ala84Pro Is Causative of X-Linked Hypophosphatemic Rickets: Possible Relationship with Burosumab Swinging Response in Adults

    No full text
    Loss of function mutations in the PHEX gene could determine X-linked dominant hypophosphatemia. This is the most common form of genetic rickets. It is characterized by renal phosphate wasting determining an increase in fibroblast growth factor 23 (FGF-23), growth retard, bone deformities and musculoskeletal manifestations. In recent decades, analysis of the PHEX gene has revealed numerous different mutations. However, no clear genotype-phenotype correlations have been reported in patients with hypophosphatemic rickets (XLH). We report two cases of a 28-year-old-male (patient 1) and a 19-year-old male (patient 2) affected by XLH initially treated with phosphate and 1,25-dihydroxyvitamin–D admitted to the Endocrinology unit because of the persistence of muscle weakness, bone pain and fatigue. After phosphate withdrawal, both patients started therapy with burosumab and symptoms ameliorated in three months. However, patient 1’s biochemical parameters did not improve as expected so we decided to investigate his genetic asset. We herein describe a possible clinical implication for the missense “de novo” mutation, c.250G>C (p.Ala84Pro) in the PHEX gene, reported in the PHEX database and classified as a variant of uncertain significance (VUS). The clinical implication of this mutation on disease burden and quality of life in adults is still under investigation

    Germline Testing in a Cohort of Patients at High Risk of Hereditary Cancer Predisposition Syndromes: First Two-Year Results from South Italy

    No full text
    Germline pathogenic variants (PVs) in oncogenes and tumour suppressor genes are responsible for 5 to 10% of all diagnosed cancers, which are commonly known as hereditary cancer predisposition syndromes (HCPS). A total of 104 individuals at high risk of HCPS were selected by genetic counselling for genetic testing in the past 2 years. Most of them were subjects having a personal and family history of breast cancer (BC) selected according to current established criteria. Genes analysis involved in HCPS was assessed by next-generation sequencing (NGS) using a custom cancer panel with high- and moderate-risk susceptibility genes. Germline PVs were identified in 17 of 104 individuals (16.3%) analysed, while variants of uncertain significance (VUS) were identified in 21/104 (20.2%) cases. Concerning the germline PVs distribution among the 13 BC individuals with positive findings, 8/13 (61.5%) were in the BRCA1/2 genes, whereas 5/13 (38.4%) were in other high- or moderate-risk genes including PALB2, TP53, ATM and CHEK2. NGS genetic testing showed that 6/13 (46.1%) of the PVs observed in BC patients were detected in triple-negative BC. Interestingly, the likelihood of carrying the PVs in the moderate-to-high-risk genes calculated by the cancer risk model BOADICEA was significantly higher in pathogenic variant carriers than in negative subjects. Collectively, this study shows that multigene panel testing can offer an effective diagnostic approach for patients at high risk of hereditary cancers

    The SGK1 Kinase Inhibitor SI113 Sensitizes Theranostic Effects of the64CuCl2in Human Glioblastoma Multiforme Cells

    Get PDF
    none12noBackground/Aims: The importance of copper in the metabolism of cancer cells has been widely studied in the last 20 years and a clear-cut association between copper levels and cancer deregulation has been established. Copper-64, emitting positrons and β-radiations, is indicated for the labeling of a large number of molecules suitable for radionuclide imaging as well as radionuclide therapy. Glioblastoma multiforme (GBM) is the CNS tumor with the worse prognosis, characterized by high number of recurrences and strong resistance to chemo-radio therapy, strongly affecting patients survival. We have recently discovered and studied the small molecule SI113, as inhibitor of SGK1, a serine/threonine protein kinase, that affects several neoplastic phenotypes and signaling cascades. The SI113-dependent SGK1 inhibition induces cell death, blocks proliferation, perturbs cell cycle progression and restores chemo-radio sensibility by modulating SGK1-related substrates. In the present paper we aim to characterize the combined effects of64CuCl2and SI113 on human GBM cell lines with variable p53 expression. Methods: Cell viability, cell death and stress/authopagic related pathways were then analyzed by FACS and WB-based assays, after exposure to SI113 and/or64CuCl2. Results: We demonstrate here, that i)64CuCl2is able to induce a time and dose dependent modulation of cell viability (with different IC50values) in highly malignant gliomas and that the co-treatment with SI113 leads to ii) additive/synergistic effects in terms of cell death; iii) enhancement of the effects of ionizing radiations, probably by a TRC1 modulation; iv) modulation of the autophagic response. Conclusions: Evidence reported here underlines the therapeutic potential of the combined treatment with SI113 and64CuCl2in GBM cells.Catalogna, Giada; Talarico, Cristina; Dattilo, Vincenzo; Gangemi, Vincenzo; Calabria, Ferdinando; D'Antona, Lucia; Schenone, Silvia; Musumeci, Francesca; Bianco, Cataldo; Perrotti, Nicola; Amato, Rosario; Cascini, Giuseppe L.Catalogna, Giada; Talarico, Cristina; Dattilo, Vincenzo; Gangemi, Vincenzo; Calabria, Ferdinando; D'Antona, Lucia; Schenone, Silvia; Musumeci, Francesca; Bianco, Cataldo; Perrotti, Nicola; Amato, Rosario; Cascini, Giuseppe L

    Inhibition of serum- and glucocorticoid-induced kinase 1 ameliorates hydrocephalus in preclinical models

    No full text
    Abstract Background Hydrocephalus is a pathological accumulation of cerebrospinal fluid (CSF), leading to ventriculomegaly. Hydrocephalus may be primary or secondary to traumatic brain injury, infection, or intracranial hemorrhage. Regardless of cause, current treatment involves surgery to drain the excess CSF. Importantly, there are no long-term, effective pharmaceutical treatments and this represents a clinically unmet need. Many forms of hydrocephalus involve dysregulation in water and electrolyte homeostasis, making this an attractive, druggable target. Methods In vitro, a combination of electrophysiological and fluid flux assays was used to elucidate secretory transepithelial electrolyte and fluid flux in a human cell culture model of the choroid plexus epithelium and to determine the involvement of serum-, glucocorticoid-induced kinase 1 (SGK1). In vivo, MRI studies were performed in a genetic rat model of hydrocephalus to determine effects of inhibition of SGK1 with a novel inhibitor, SI113. Results In the cultured cell line, SI113 reduced secretory transepithelial electrolyte and fluid flux. In vivo, SI113 blocks the development of hydrocephalus with no effect on ventricular size of wild-type animals and no overt toxic effects. Mechanistically, the development of hydrocephalus in the rat model involves an increase in activated, phosphorylated SGK1 with no change in the total amount of SGK1. SI113 inhibits phosphorylation with no changes in total SGK1 levels in the choroid plexus epithelium. Conclusion These data provide a strong preclinical basis for the use of SGK1 inhibitors in the treatment of hydrocephalus

    In Silico Identification and Biological Evaluation of Novel Selective Serum/Glucocorticoid-Inducible Kinase 1 Inhibitors Based on the Pyrazolo-Pyrimidine Scaffold

    No full text
    The serum/glucocorticoid-inducible kinase 1 (Sgk1) has demonstrated antiapoptotic function and the capability to regulate cell survival, proliferation, and differentiation. A pivotal role of Sgk1 in carcinogenesis and in resistance to anticancer therapy has been suggested. With the aim of identifying new Sgk1 modulators, 322 pyrazolo-pyrimidine derivatives have been virtually screened with respect to a crystallographic model of Sgk1. The top five ranked compounds have been evaluated demonstrating Sgk1 inhibition in vitro and selectivity compared to RAC-alpha serine/threonine-protein kinase (Akt1)
    corecore