4,633 research outputs found

    Brent Crude Oil Prices Volatility During Major Crises

    Get PDF
    Volatility patterns in Brent crude oil spot and futures prices are examined during four major crises that significantly affected the oil markets: the First Gulf war 1990/91; the Asian Financial crisis 1997/98; the US terrorist attack 2001; and the Global Financial crisis 2008/9. The selected crises arose due to different triggers having diverse implications for oil market participants. The outcomes reveal higher levels of volatility during crises that was directly associated with oil supply/demand disruptions and higher volatility persistence during financial/economic crises, indicating that volatility persistence is a key issue when uncertainty is derived from global economic and financial instability

    Glycine receptors in GtoPdb v.2023.1

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the GABAA, nicotinic acetylcholine and 5-HT3 receptors and Zn2+- activated channels. The glycine receptor is expressed either as a homo-pentamer of α subunits, or a complex of 4α and 1β subunits [131], that contains an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [20, 84, 94]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits [79]. The α4 subunit is a pseudogene in humans [66]. High resolution molecular structures are available for α1 homomeric, α3 homomeric, and αβ hteromeric receptors in a variety of ligand-induced conformations [19, 129, 19, 48, 49, 50]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [55, 89]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [125, 124]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [97]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [26]. Extracellular Zn2+ potentiates GlyR function at nanomolar concentrations [87]. and causes inhibition at higher micromolar concentrations (17)

    Glycine receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABAA, nicotinic acetylcholine and 5-HT3 receptors [63]. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [30, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [80, 91, 18]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the mature form of the receptor contains α1 (or α3) and β subunits while the immature form is mostly composed of only α2 subunits. RNA transcripts encoding the α4-subunit have not been detected in adult humans. The N-terminal domain of the α-subunit contains both the agonist and strychnine binding sites that consist of several discontinuous regions of amino acids. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. The latter is a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [86, 51, 53]. G-protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [122, 121]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [94]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [24]

    In-body path loss models for implants in heterogeneous human tissues using implantable slot dipole conformal flexible antennas

    Get PDF
    A wireless body area network (WBAN) consists of a wireless network with devices placed close to, attached on, or implanted into the human body. Wireless communication within a human body experiences loss in the form of attenuation and absorption. A path loss model is necessary to account for these losses. In this article, path loss is studied in the heterogeneous anatomical model of a 6-year male child from the Virtual Family using an implantable slot dipole conformal flexible antenna and an in-body path loss model is proposed at 2.45 GHz with application to implants in a human body. The model is based on 3D electromagnetic simulations and is compared to models in a homogeneous muscle tissue medium

    Glycine receptors (version 2020.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABAA, nicotinic acetylcholine and 5-HT3 receptors and Zn2+- activated channels. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [32, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [82, 92, 20]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits. The &a;pha;4 subunit is a pseudogene in humans. High resolution molecular structures are available for the α1 and α3 homomeric receptors [49, 19]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [55, 53, 87]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [123, 122]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [95]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [26]. Extracellular Zn2+ potentiates GlyR function at nanomolar concentrations [85]. and causes inhibition at higher micromolar concentrations (17)

    Glycine receptors in GtoPdb v.2021.3

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the zinc activated channels, GABAA, nicotinic acetylcholine and 5-HT3 receptors and Zn2+- activated channels. The receptor is expressed either as a homo-pentamer of α subunits, or a complex now thought to harbour 2α and 3β subunits [33, 7], that contain an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [83, 93, 21]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits. The &a;pha;4 subunit is a pseudogene in humans. High resolution molecular structures are available for the α1 and α3 homomeric receptors [50, 20]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [56, 54, 88]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [124, 123]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [96]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [27]. Extracellular Zn2+ potentiates GlyR function at nanomolar concentrations [86]. and causes inhibition at higher micromolar concentrations (17)

    Glycine receptors in GtoPdb v.2023.1

    Get PDF
    The inhibitory glycine receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on Glycine Receptors) is a member of the Cys-loop superfamily of transmitter-gated ion channels that includes the GABAA, nicotinic acetylcholine and 5-HT3 receptors and Zn2+- activated channels. The glycine receptor is expressed either as a homo-pentamer of α subunits, or a complex of 4α and 1β subunits [131], that contains an intrinsic anion channel. Four differentially expressed isoforms of the α-subunit (α1-α4) and one variant of the β-subunit (β1, GLRB, P48167) have been identified by genomic and cDNA cloning. Further diversity originates from alternative splicing of the primary gene transcripts for α1 (α1INS and α1del), α2 (α2A and α2B), α3 (α3S and α3L) and β (βΔ7) subunits and by mRNA editing of the α2 and α3 subunit [20, 84, 94]. Both α2 splicing and α3 mRNA editing can produce subunits (i.e., α2B and α3P185L) with enhanced agonist sensitivity. Predominantly, the adult form of the receptor contains α1 (or α3) and β subunits whereas the immature form is mostly composed of only α2 subunits [79]. The α4 subunit is a pseudogene in humans [66]. High resolution molecular structures are available for α1 homomeric, α3 homomeric, and αβ hteromeric receptors in a variety of ligand-induced conformations [19, 129, 19, 48, 49, 50]. As in other Cys-loop receptors, the orthosteric binding site for agonists and the competitive antagonist strychnine is formed at the interfaces between the subunits’ extracellular domains. Inclusion of the β-subunit in the pentameric glycine receptor contributes to agonist binding, reduces single channel conductance and alters pharmacology. The β-subunit also anchors the receptor, via an amphipathic sequence within the large intracellular loop region, to gephyrin. This a cytoskeletal attachment protein that binds to a number of subsynaptic proteins involved in cytoskeletal structure and thus clusters and anchors hetero-oligomeric receptors to the synapse [55, 89]. G protein βγ subunits enhance the open state probability of native and recombinant glycine receptors by association with domains within the large intracellular loop [125, 124]. Intracellular chloride concentration modulates the kinetics of native and recombinant glycine receptors [97]. Intracellular Ca2+ appears to increase native and recombinant glycine receptor affinity, prolonging channel open events, by a mechanism that does not involve phosphorylation [26]. Extracellular Zn2+ potentiates GlyR function at nanomolar concentrations [87]. and causes inhibition at higher micromolar concentrations (17)
    • …
    corecore