3 research outputs found

    Optical sensing in urban areas by deployed telecommunication fiber networks

    Get PDF
    The telecommunication fiber network already deployed in urban areas provides an added value to the optical asset itself, allowing a smart monitoring of our cities in a large scale. It is possible to use deployed PON infrastructures for structural vibration and local seismologic perturbations monitoring. On the other hand, surveillance of the embedded network and real-time safety diagnostic is also possible. The invited talk will present different experimental demonstrations to show the sensing performance by exploiting deployed fiber links, assessing the compatibility with the optical data telecom traffic at very high rate

    Coherent Fiber-Optic Sensor for Ultra-Acoustic Crack Emissions

    Get PDF
    A coherent optical fiber sensor with adequate sensitivity for detecting the acoustic emission (AE) during the propagation of a crack in a ferrous material is presented. The proposed fiber optic sensor is successfully compared in terms of the SNR (Signal to Noise Ratio) and detectable AE energy levels to commercially available AE piezo-transducers sensors and is proven to be an effective and advantageous alternative for sensing and monitoring fatigue damage in structural applications

    On-Chip Quantum Communication Devices

    No full text
    We present here results of the Quantum Technology Flagship project UNIQORN in the area of integrated photonics for quantum communication applications. Three distinct integration platforms, namely indium phosphide based monolithic integration, polymer-based hybrid integration and the CMOS-compatible silicon platform, have been employed to manufacture components and sub-systems on chip for quantum communication devices. The choice of different platforms was made to exploit the best characteristics of each platform for the intended quantum communication device. The indium phosphide platform was employed to manufacture a transmitter chip for quantum key distribution featuring laser, modulators, and attenuators. The transmitter chip was evaluated in a QKD experiment achieving a secure rate of 1 kbit/s. The polymer platform was investigated for engineering non-classical light sources. Entangled and heralded single-photon sources, based on non-linear optics, were assembled on the polymer in a hybrid fashion together with waveguides and other passive micro-optical elements. A quantum random number generator, featuring a 70% randomness extraction efficiency, was also fabricated using the polymer integration technique. An array of 32 individual single-photon avalanche diodes, operating at room temperature and featuring an onboard coincidence logic, was coupled to the chip to demonstrate direct detection of photons on the polymer. Finally, a transimpedance amplifier based on gallium arsenide high electron mobility transistors was produced with an exceptional large electrical noise clearance of 28 dB at 100 MHz
    corecore