55 research outputs found

    Sulfur abundances in three Galactic clusters: Ruprecht 106, Trumpler 5 and Trumpler 20

    Full text link
    Context. Sulfur (S) is one of the lesser-studied α\alpha-elements. Published investigations of its behavior have so far focused on local stars, and only a few clusters of the Milky Way have been considered to study this topic. We aim to study the S content of the globular cluster Ruprecht 106 -- which has never before been studied for this purpose, but is known to present low levels of the [α\alpha/Fe] abundance ratio -- and the open cluster Trumpler 5. The only star studied so far in Trumpler 5 shows an unexpectedly low abundance of S. Aims. With this work, we aim to provide the first S abundance in Ruprecht 106 and to investigate the S content of Trumpler 5 with a larger sample of stars. The open cluster Trumpler 20 is considered as a reference object. Methods. We performed a standard abundance analysis based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and on high-resolution and high-signal-to-noise-ratio UVES-slit and UVES/FLAMES spectra. We also applied corrections for nonLTE. The metallicities of the targets were obtained by studying equivalent widths. Sulfur abundances were derived from multiplets 1, 6, and 8 by spectrosynthesis. Results. We find that the metallicities of Ruprecht 106 and Trumpler 5 are [Fe/H]= -1.37+/-0.11 and [Fe/H]= -0.49+/-0.14, respectively. Ruprecht 106 is less S-rich than the other Galactic clusters at similar metallicity. The low S content of Ruprecht 106, [S/Fe]NLTE= -0.52+/-0.13, is consistent with its shortage of α\alpha-elements. This supports an extra-galactic origin of this cluster. We obtained a new and more robust S content value of Trumpler 5 of about [S/Fe]NLTE= 0.05+/-0.20. According to our results, Trumpler 5 follows the trend of the Galactic disk in the [S/Fe]LTE versus [Fe/H] diagram. Our results for Trumpler 20, of namely [Fe/H]= 0.06+/-0.15 and [S/Fe]NLTE= -0.28+/-0.21, are in agreement with those in the literature.Comment: 15 pages, 7 figures, 5 table

    Optimization of contrast medium volume for abdominal CT in oncologic patients: prospective comparison between fixed and lean body weight-adapted dosing protocols

    Get PDF
    Background: Patient body size represents the main determinant of parenchymal enhancement and by adjusting the contrast media (CM) dose to patient weight may be a more appropriate approach to avoid a patient over dosage of CM. To compare the performance of fixed-dose and lean body weight (LBW)-adapted contrast media dosing protocols, in terms of image quality and parenchymal enhancement. Results: One-hundred cancer patients undergoing multiphasic abdominal CT were prospectively enrolled in this multicentric study and randomly divided in two groups: patients in fixed-dose group (n = 50) received 120 mL of CM while in LBW group (n = 50) the amount of CM was computed according to the patient’s LBW. LBW protocol group received a significantly lower amount of CM (103.47 ± 17.65 mL vs. 120.00 ± 0.00 mL, p < 0.001). Arterial kidney signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) and pancreatic CNR were significantly higher in LBW group (all p ≀ 0.004). LBW group provided significantly higher arterial liver, kidney, and pancreatic contrast enhancement index (CEI) and portal venous phase kidney CEI (all p ≀ 0.002). Significantly lower portal vein SNR and CNR were observed in LBW-Group (all p ≀ 0.020). Conclusions: LBW-adapted CM administration for abdominal CT reduces the volume of injected CM and improves both image quality and parenchymal enhancement

    Magnetic resonance of rectal cancer response to therapy: an Image quality comparison between 3.0 and 1.5 Tesla

    Get PDF
    Purpose. To evaluate signal intensity (SI) differences between 3.0 T and 1.5 T on T2-weighted (T2w), diffusion-weighted imaging (DWI), and apparent diffusion coefficient (ADC) in rectal cancer pre-, during, and postneoadjuvant chemoradiotherapy (CRT). Materials and Methods. 22 patients with locally advanced rectal cancer were prospectively enrolled. All patients underwent T2w, DWI, and ADC pre-, during, and post-CRT on both 3.0 T MRI and 1.5 T MRI. A radiologist drew regions of interest (ROIs) of the tumor and obturator internus muscle on the selected slice to evaluate SI and relative SI (rSI). Additionally, a subanalysis evaluating the SI before and after-CRT (ΔSI pre-post) in complete responder patients (CR) and nonresponder patients (NR) on T2w, DWI, and ADC was performed. Results. Significant differences were observed for T2w and DWI on 3.0 T MRI compared to 1.5 T MRI pre-, during, and post-CRT (all P<0.001), whereas no significant differences were reported for ADC among all controls (all P>0.05). rSI showed no significant differences in all the examinations for all sequences (all P>0.05). ΔSI showed significant differences between 3.0 T and 1.5 T MRI for DWI-ΔSI in CR and NR (188.39±166.90 vs. 30.45±21.73 and 169.70±121.87 vs. 22.00±31.29, respectively, all P 0.02) and ADC-ΔSI for CR (-0.58±0.27 vs. -0.21±0.24P value 0.02), while no significant differences were observed for ADC-ΔSI in NR and both CR and NR for T2w-ΔSI. Conclusion. T2w-SI and DWI-SI showed significant differences for 3.0 T compared to 1.5 T in all three controls, while ADCSI showed no significant differences in all three controls on both field strengths. rSI was comparable for 3.0 T and 1.5 T MRI in rectal cancer patients; therefore, rectal cancer patients can be assessed both at 3.0 T MRI and 1.5 T MRI. However, a significant DWI-ΔSI and ADC-ΔSI on 3.0 T in CR might be interpreted as a better visual assessment in discriminating response to therapy compared to 1.5 T. Further investigations should be performed to confirm future possible clinical application

    MINCE: I. Presentation of the project and of the first year sample

    Get PDF
    Context. In recent years, Galactic archaeology has become a particularly vibrant field of astronomy, with its main focus set on the oldest stars of our Galaxy. In most cases, these stars have been identified as the most metal-poor. However, the struggle to find these ancient fossils has produced an important bias in the observations - in particular, the intermediate metal-poor stars (-2.5 < [Fe/H] <-1.5) have been frequently overlooked. The missing information has consequences for the precise study of the chemical enrichment of our Galaxy, in particular for what concerns neutron capture elements and it will be only partially covered by future multi object spectroscopic surveys such as WEAVE and 4MOST. Aims. Measuring at Intermediate Metallicity Neutron Capture Elements (MINCE) is gathering the first high-quality spectra (high signal-to-noise ratio, S/N, and high resolution) for several hundreds of bright and metal-poor stars, mainly located in our Galactic halo. Methods. We compiled our selection mainly on the basis of Gaia data and determined the stellar atmospheres of our sample and the chemical abundances of each star. Results. In this paper, we present the first sample of 59 spectra of 46 stars. We measured the radial velocities and computed the Galactic orbits for all stars. We found that 8 stars belong to the thin disc, 15 to disrupted satellites, and the remaining cannot be associated to the mentioned structures, and we call them halo stars. For 33 of these stars, we provide abundances for the elements up to zinc. We also show the chemical evolution results for eleven chemical elements, based on recent models. Conclusions. Our observational strategy of using multiple telescopes and spectrographs to acquire high S/N and high-resolution spectra for intermediate-metallicity stars has proven to be very efficient, since the present sample was acquired over only about one year of observations. Finally, our target selection strategy, after an initial adjustment, proved satisfactory for our purposes

    Sulfur abundances in the Galactic bulge and disk

    Get PDF
    Context. The measurement of α-element abundances provides a powerful tool for placing constraints on the chemical evolution and star formation history of galaxies. The majority of studies on the α-element sulfur (S) are focused on local stars, making S behavior in other environments an astronomical topic that is yet to be explored in detail. Aims. The investigation of S in the Galactic bulge was recently considered for the first time. This work aims to improve our knowledge on S behavior in this component of the Milky Way. Methods. We present the S abundances of 74 dwarf and sub-giant stars in the Galactic bulge, along with 21 and 30 F and G thick- and thin-disk stars, respectively. We performed a local thermodynamic equilibrium analysis and applied corrections for non-LTE on high resolution and high signal-to-noise UVES spectra. S abundances were derived from multiplets 1, 6, and 8 in the metallicity range of - 2 &lt; [Fe/H] &lt; 0.6, by spectrosynthesis or line equivalent widths. Results. We confirm that the behavior of S resembles that of an α-element within the Galactic bulge. In the [S/Fe] versus [Fe/H] diagram, S presents a plateau at low metallicity, followed by a decreasing of [S/Fe] with the increasing of [Fe/H], before reaching [S/Fe] ∌ 0 at a super-solar metallicity. We found that the Galactic bulge is S-rich with respect to both the thick- and thin-disks at - 1 &lt; [Fe/H] &lt; 0.3, supporting a scenario of more rapid formation and chemical evolution in the Galactic bulge than in the disk

    On the analysis and possible prevention of symptoms related to virtual reality exposure

    No full text

    Sulfur abundances in three Galactic clusters: Ruprecht 106, Trumpler 5, and Trumpler 20

    Get PDF
    Context. Sulfur (S) is one of the lesser-studied α-elements. Published investigations of its behavior have so far focused on local stars, and only a few clusters of the Milky Way have been considered to study this topic. We aim to study the S content of the globular cluster Ruprecht 106 which has never before been studied for this purpose, but is known to present low levels of the [α/Fe] abundance ratio and the open cluster Trumpler 5. The only star studied so far in Trumpler 5 shows an unexpectedly low abundance of S. Aims. With this work, we aim to provide the first S abundance in Ruprecht 106 and to investigate the S content of Trumpler 5 with a larger sample of stars. The open cluster Trumpler 20 is considered as a reference object. Methods. We performed a standard abundance analysis based on 1D model atmospheres in local thermodynamical equilibrium (LTE) and on high-resolution and high-signal-to-noise-ratio UVES-slit and UVES/FLAMES spectra. We also applied corrections for nonLTE. The metallicities of the targets were obtained by studying equivalent widths. Sulfur abundances were derived from multiplets 1, 6, and 8 by spectrosynthesis. Results. We find that the metallicities of Ruprecht 106 and Trumpler 5 are [Fe/H] = 1.37±0.11 and [Fe/H] = 0.49±0.14, respectively. Ruprecht 106 is less S-rich than the other Galactic clusters at similar metallicity. The low S content of Ruprecht 106, [S/Fe]NLTE = 0.52±0.13, is consistent with its shortage of α-elements. This supports an extra-galactic origin of this cluster. We obtained a new and more robust S content value of Trumpler 5 of about [S/Fe]NLTE = 0.05±0.20. According to our results, Trumpler 5 follows the trend of the Galactic disk in the [S/Fe]LTE versus [Fe/H] diagram. Our results for Trumpler 20, of namely [Fe/H]= 0.06±0.15 and [S/Fe]NLTE = 0.28±0.21, are in agreement with those in the literature
    • 

    corecore