1,511 research outputs found

    Tunable diffusion of magnetic particles in a quasi-one-dimensional channel

    Full text link
    The diffusion of a system of ferromagnetic dipoles confined in a quasi-one-dimensional parabolic trap is studied using Brownian dynamics simulations. We show that the dynamics of the system is tunable by an in-plane external homogeneous magnetic field. For a strong applied magnetic field, we find that the mobility of the system, the exponent of diffusion and the crossover time among different diffusion regimes can be tuned by the orientation of the magnetic field. For weak magnetic fields, the exponent of diffusion in the subdiffusive regime is independent of the orientation of the external field.Comment: 9 pages, 13 figures, to appear in Phys. Rev. E (2013

    Magnetic particles confined in a modulated channel: structural transitions tunable by tilting a magnetic field

    Full text link
    The ground state of colloidal magnetic particles in a modulated channel are investigated as function of the tilt angle of an applied magnetic field. The particles are confined by a parabolic potential in the transversal direction while in the axial direction a periodic substrate potential is present. By using Monte Carlo (MC) simulations, we construct a phase diagram for the different crystal structures as a function of the magnetic field orientation, strength of the modulated potential and the commensurability factor of the system. Interestingly, we found first and second order phase transitions between different crystal structures, which can be manipulated by the orientation of the external magnetic field. A re-entrant behavior is found between two- and four-chain configurations, with continuous second order transitions. Novel configurations are found consisting of frozen in solitons. By changing the orientation and/or strength of the magnetic field and/or the strength and the spatial frequency of the periodic substrate potential, the system transits through different phases.Comment: Submitted to Phys. Rev. E (10 pages, 12 figures

    Transition from single-file to two-dimensional diffusion of interacting particles in a quasi-one-dimensional channel

    Full text link
    Diffusive properties of a monodisperse system of interacting particles confined to a \textit{quasi}-one-dimensional (Q1D) channel are studied using molecular dynamics (MD) simulations. We calculate numerically the mean-squared displacement (MSD) and investigate the influence of the width of the channel (or the strength of the confinement potential) on diffusion in finite-size channels of different shapes (i.e., straight and circular). The transition from single-file diffusion (SFD) to the two-dimensional diffusion regime is investigated. This transition (regarding the calculation of the scaling exponent (α\alpha) of the MSD tα\propto t^{\alpha}) as a function of the width of the channel, is shown to change depending on the channel's confinement profile. In particular the transition can be either smooth (i.e., for a parabolic confinement potential) or rather sharp/stepwise (i.e., for a hard-wall potential), as distinct from infinite channels where this transition is abrupt. This result can be explained by qualitatively different distributions of the particle density for the different confinement potentials.Comment: 13 pages, 11 figure

    Invasion Percolation Between two Sites

    Full text link
    We investigate the process of invasion percolation between two sites (injection and extraction sites) separated by a distance r in two-dimensional lattices of size L. Our results for the non-trapping invasion percolation model indicate that the statistics of the mass of invaded clusters is significantly dependent on the local occupation probability (pressure) Pe at the extraction site. For Pe=0, we show that the mass distribution of invaded clusters P(M) follows a power-law P(M) ~ M^{-\alpha} for intermediate values of the mass M, with an exponent \alpha=1.39. When the local pressure is set to Pe=Pc, where Pc corresponds to the site percolation threshold of the lattice topology, the distribution P(M) still displays a scaling region, but with an exponent \alpha=1.02. This last behavior is consistent with previous results for the cluster statistics in standard percolation. In spite of these discrepancies, the results of our simulations indicate that the fractal dimension of the invaded cluster does not depends significantly on the local pressure Pe and it is consistent with the fractal dimension values reported for standard invasion percolation. Finally, we perform extensive numerical simulations to determine the effect of the lattice borders on the statistics of the invaded clusters and also to characterize the self-organized critical behavior of the invasion percolation process.Comment: 7 pages, 11 figures, submited for PR

    Al2O3 preforms infiltrated with poly(methyl methacrylate) for dental prosthesis manufacturing

    Get PDF
    The combination of biocompatible polymers and ceramics shows great promise in the development of composites with suitable mechanical properties for dental applications. In an attempt to further expand this research line, Al2O3 commercial powders (Vitro-ceram, Alglass, In-ceram) were sintered at 1400◦C for 2 h and infiltrated with poly(methyl methacrylate) for potential use in dental prostheses. The infiltration was performed using a homemade apparatus under a pressure of 7 bar for 6 and 12 h. The microstructure (studied using a scanning electron microscope), Archimedes density, 3-point bending flexural strength and Vickers hardness of the prepared composites were assessed and quantitatively compared. In general, microstructural analyses showed ceramic-and polymer-based interpenetrating network in all materials. The preforms infiltrated for 12 h showed superior properties; among them, the Vitro-ceram-based composite also demonstrated a near-zero open porosity and optimum mechanical characteristics. Specifically, its density, strength and hardness were 2.6 ± 0.07 g/cm3, 119.3 ± 5.0 MPa and 1055.1 ± 111.0 HV, respectively, passing the acceptance criteria of ISO 6872 and making it suitable for consideration as a metal-free structure for dental crowns and fixed partial prostheses until three anterior units

    Productive performance of vernalizated semi-noble garlic cultivars in western Rio Grande do Norte State, Brazil.

    Get PDF
    Com o presente estudo, objetivou-se o desenvolvimento e a produção de cultivares de alho semi-noble, submetidas a diferentes períodos de vernalização pré-plantio dos bulbos-sementeem dois municípios da Mesorregião Oeste Potiguar

    Ciclos de vida comparados de Aedes aegypti (Diptera, Culicidae) do semiárido da Paraíba.

    Get PDF
    O presente trabalho teve como objetivo comparar os ciclos de vida entre amostras de populações de Aedes aegypti (Linnaeus, 1762) coletadas em dez municípios localizados no semiárido paraibano. Os ciclos de vida foram estudados a uma temperatura de 26 ± 2ºC, umidade relativa de 60 ± 10% e fotofase de 12 horas. Diariamente foram avaliados os períodos de desenvolvimentos e as viabilidades das fases de ovo, larva e pupa, bem como a razão sexual, longevidade, tamanho e fecundidade dos adultos. Foi realizada uma análise de agrupamento, utilizando-se uma matriz de distância euclidiana através do método da média não-ponderada. As durações e viabilidades para as fases de ovo, larva e pupa apresentaram respectivamente, uma variação média de 3,7 a 4,7 dias e 82,8% a 97,7%, 9,1 a 10,8 dias e 91,2% a 99,2% e de 2,1 a 2,5 dias e 93,5% a 98,4%. O comprimento alar foi de 5,13 a 5,34 mm para as fêmeas e de 4,18 a 4,25 mm para os machos. A menor fecundidade (153,6 ovos/fêmea) ocorreu na população de A. aegypti oriunda de Pedra Lavrada, enquanto que a maior fecundidade (310,6 ovos/fêmea) foi constatada para A. aegypti de Campina Grande. A análise de agrupamento com base na similaridade dos dados biológicos revelou a formação de dois grandes grupos distintos, onde as populações de A. aegypti de Serra Branca e Cuité apresentam maior similaridade entre si. As diferenças de ciclos biológicos verificadas entre as populações de A. aegypti demonstra a capacidade dessa espécie de sofrer variações na sua biologia e se adaptar às diferentes condições ambientais, favorecendo a permanência deste inseto nessas áreas com aumento do risco de transmissão do vírus da dengue
    corecore