4,433 research outputs found

    Conservative evaluation of the uncertainty in the LAGEOS-LAGEOS II Lense-Thirring test

    Full text link
    We deal with the test of the general relativistic gravitomagnetic Lense-Thirring effect currently ongoing in the Earth's gravitational field with the combined nodes \Omega of the laser-ranged geodetic satellites LAGEOS and LAGEOS II. One of the most important source of systematic uncertainty on the orbits of the LAGEOS satellites, with respect to the Lense-Thirring signature, is the bias due to the even zonal harmonic coefficients J_L of the multipolar expansion of the Earth's geopotential which account for the departures from sphericity of the terrestrial gravitational potential induced by the centrifugal effects of its diurnal rotation. The issue addressed here is: are the so far published evaluations of such a systematic error reliable and realistic? The answer is negative. Indeed, if the difference \Delta J_L among the even zonals estimated in different global solutions (EIGEN-GRACE02S, EIGEN-CG03C, GGM02S, GGM03S, ITG-Grace02, ITG-Grace03s, JEM01-RL03B, EGM2008, AIUB-GRACE01S) is assumed for the uncertainties \delta J_L instead of using their more or less calibrated covariance sigmas \sigma_{J_L}, it turns out that the systematic error \delta\mu in the Lense-Thirring measurement is about 3 to 4 times larger than in the evaluations so far published based on the use of the sigmas of one model at a time separately, amounting up to 37% for the pair EIGEN-GRACE02S/ITG-Grace03s. The comparison among the other recent GRACE-based models yields bias as large as about 25-30%. The major discrepancies still occur for J_4, J_6 and J_8, which are just the zonals the combined LAGEOS/LAGOES II nodes are most sensitive to.Comment: LaTex, 12 pages, 12 tables, no figures, 64 references. To appear in Central European Journal of Physics (CEJP

    LAGEOS-type Satellites in Critical Supplementary Orbit Configuration and the Lense-Thirring Effect Detection

    Full text link
    In this paper we analyze quantitatively the concept of LAGEOS--type satellites in critical supplementary orbit configuration (CSOC) which has proven capable of yielding various observables for many tests of General Relativity in the terrestrial gravitational field, with particular emphasis on the measurement of the Lense--Thirring effect.Comment: LaTex2e, 20 pages, 7 Tables, 6 Figures. Changes in Introduction, Conclusions, reference added, accepted for publication in Classical and Quantum Gravit

    Min-Max Theorems for Packing and Covering Odd (u,v)(u,v)-trails

    Full text link
    We investigate the problem of packing and covering odd (u,v)(u,v)-trails in a graph. A (u,v)(u,v)-trail is a (u,v)(u,v)-walk that is allowed to have repeated vertices but no repeated edges. We call a trail odd if the number of edges in the trail is odd. Let ν(u,v)\nu(u,v) denote the maximum number of edge-disjoint odd (u,v)(u,v)-trails, and τ(u,v)\tau(u,v) denote the minimum size of an edge-set that intersects every odd (u,v)(u,v)-trail. We prove that τ(u,v)≤2ν(u,v)+1\tau(u,v)\leq 2\nu(u,v)+1. Our result is tight---there are examples showing that τ(u,v)=2ν(u,v)+1\tau(u,v)=2\nu(u,v)+1---and substantially improves upon the bound of 88 obtained in [Churchley et al 2016] for τ(u,v)/ν(u,v)\tau(u,v)/\nu(u,v). Our proof also yields a polynomial-time algorithm for finding a cover and a collection of trails satisfying the above bounds. Our proof is simple and has two main ingredients. We show that (loosely speaking) the problem can be reduced to the problem of packing and covering odd (uv,uv)(uv,uv)-trails losing a factor of 2 (either in the number of trails found, or the size of the cover). Complementing this, we show that the odd-(uv,uv)(uv,uv)-trail packing and covering problems can be tackled by exploiting a powerful min-max result of [Chudnovsky et al 2006] for packing vertex-disjoint nonzero AA-paths in group-labeled graphs

    A critical approach to the concept of a polar, low-altitude LARES satellite

    Get PDF
    According to very recent developments of the LARES mission, which would be devoted to the measurement of the general relativistic Lense--Thirring effect in the gravitational field of the Earth with Satellite Laser Ranging, it seems that the LARES satellite might be finally launched in a polar, low--altitude orbit by means of a relatively low--cost rocket. The observable would be the node only. In this letter we critically analyze this scenario.Comment: LaTex2e, 11 pages, 4 figures, 1 table. Accepted for publication in Classical and Quantum Gravit

    The LArase Satellites Spin mOdel Solutions (LASSOS): a comprehensive model for the spin evolution of the LAGEOS and LARES satellites

    Get PDF
    The two LAGEOS and LARES are laser-ranged satellites tracked with the best accuracy ever achieved. Using their range measurements many geophysical parameters were calculated and some General Relativity effects were directly observed. To obtain precise and refined measurements of the effects due to the predictions of General Relativity on the orbit of these satellites, it is mandatory to model with high precision and accuracy all other forces, reducing the free parameters introduced in the orbit determination. A main category of non-gravitational forces to be considered are those of thermal origin, whose fine modeling strongly depends on the knowledge of the evolution of the spin vector. We present a complete model, named LASSOS, to describe the evolution of the spin of the LAGEOS and LARES satellites. In particular, we solved Euler equations of motion considering not-averaged torques. This is the most general case, and the predictions of the model well fit the available observations of the satellites spin. We also present the predictions of our model in the fast-spin limit, based on the application of averaged equations. The results are in good agreement with those already published, but with our approach we have been able to highlight small errors within these previous works. LASSOS was developed within the LARASE research program. LARASE aims to improve the dynamical model of the two LAGEOS and LARES satellites to provide very precise and accurate measurements of relativistic effects on their orbit, and also to bring benefits to geophysics and space geodesy

    On a new observable for measuring the Lense-Thirring effect with Satellite Laser Ranging

    Get PDF
    In this paper we present a rather extensive error budget for the difference of the perigees of a pair of supplementary SLR satellites aimed to the detection of the Lense-Thirring effect.Comment: LaTex2e, 14 pages, 1 table, no figures. Some changes and additions to the abstract, Introduction and Conclusions. References updated, typos corrected. Equation corrected. To appear in General Relativity and Gravitatio

    Perspectives in measuring the PPN parameters beta and gamma in the Earth's gravitational fields with the CHAMP/GRACE models

    Full text link
    The current bounds on the PPN parameters gamma and beta are of the order of 10^-4-10^-5. Various missions aimed at improving such limits by several orders of magnitude have more or less recently been proposed like LATOR, ASTROD, BepiColombo and GAIA. They involve the use of various spacecraft, to be launched along interplanetary trajectories, for measuring the effects of the solar gravity on the propagation of electromagnetic waves. In this paper we investigate what is needed to measure the combination nu=(2+2gamma-beta)/3 of the post-Newtonian gravitoelectric Einstein perigee precession of a test particle to an accuracy of about 10^-5 with a pair of drag-free spacecraft in the Earth's gravitational field. It turns out that the latest gravity models from the dedicated CHAMP and GRACE missions would allow to reduce the systematic error of gravitational origin just to this demanding level of accuracy. In regard to the non-gravitational errors, the spectral noise density of the drag-free sensors required to reach such level of accuracy would amounts to 10^-8-10^-9 cm s^-2 Hz^-1/2 over very low frequencies. Although not yet obtainable with the present technologies, such level of compensation is much less demanding than those required for, e.g., LISA. As a by-product, an independent measurement of the post-Newtonian gravitomagnetic Lense-Thirring effect with a 0.9% accuracy would be possible as well. The forthcoming Earth gravity models from CHAMP and GRACE will further reduce the systematic gravitational errors in both of such tests.Comment: LaTex2e, 14 pages, 3 tables, no figures, 75 references. To appear in Int. J. Mod. Phys.
    • …
    corecore