The current bounds on the PPN parameters gamma and beta are of the order of
10^-4-10^-5. Various missions aimed at improving such limits by several orders
of magnitude have more or less recently been proposed like LATOR, ASTROD,
BepiColombo and GAIA. They involve the use of various spacecraft, to be
launched along interplanetary trajectories, for measuring the effects of the
solar gravity on the propagation of electromagnetic waves. In this paper we
investigate what is needed to measure the combination nu=(2+2gamma-beta)/3 of
the post-Newtonian gravitoelectric Einstein perigee precession of a test
particle to an accuracy of about 10^-5 with a pair of drag-free spacecraft in
the Earth's gravitational field. It turns out that the latest gravity models
from the dedicated CHAMP and GRACE missions would allow to reduce the
systematic error of gravitational origin just to this demanding level of
accuracy. In regard to the non-gravitational errors, the spectral noise density
of the drag-free sensors required to reach such level of accuracy would amounts
to 10^-8-10^-9 cm s^-2 Hz^-1/2 over very low frequencies. Although not yet
obtainable with the present technologies, such level of compensation is much
less demanding than those required for, e.g., LISA. As a by-product, an
independent measurement of the post-Newtonian gravitomagnetic Lense-Thirring
effect with a 0.9% accuracy would be possible as well. The forthcoming Earth
gravity models from CHAMP and GRACE will further reduce the systematic
gravitational errors in both of such tests.Comment: LaTex2e, 14 pages, 3 tables, no figures, 75 references. To appear in
Int. J. Mod. Phys.