4 research outputs found

    Influence of Prescribed Fire on Ecosystem Biomass, Carbon, and Nitrogen in a Pinyon Juniper Woodland

    Get PDF
    Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may conflict with management for other ecosystem services and fuels reduction. Before appropriate decisions can be made it is necessary to understand the interactions between woodland expansion, management treatments, and carbon retention. We quantified effects of prescribed fire as a fuels reduction and ecosystem maintenance treatment on fuel loads, ecosystem carbon, and nitrogen in a pinyon–juniper woodland in the central Great Basin. We found that plots containing 30% tree cover averaged nearly 40 000 kg · ha−1 in total aboveground biomass, 80 000 kg · ha−1 in ecosystem carbon (C), and 5 000 kg · ha−1 in ecosystem nitrogen (N). Only 25% of ecosystem C and 5% of ecosystem N resided in aboveground biomass pools. Prescribed burning resulted in a 65% reduction in aboveground biomass, a 68% reduction in aboveground C, and a 78% reduction in aboveground N. No statistically significant change in soil or total ecosystem C or N occurred. Prescribed fire was effective at reducing fuels on the landscape and resulted in losses of C and N from aboveground biomass. However, the immediate and long-term effects of burning on soil and total ecosystem C and N is still unclear

    Transition From Sagebrush Steppe to Annual Grass (Bromus tectorum): Influence on Belowground Carbon and Nitrogen

    Get PDF
    Vegetation changes associated with climate shifts and anthropogenic disturbance have major impacts on biogeochemical cycling. Much of the interior western United States currently is dominated by sagebrush (Artemisia tridentata Nutt.) ecosystems. At low to intermediate elevations, sagebrush ecosystems increasingly are influenced by cheatgrass (Bromus tectorum L.) invasion. Little currently is known about the distribution of belowground organic carbon (OC) on these changing landscapes, how annual grass invasion affects OC pools, or the role that nitrogen (N) plays in carbon (C) retention. As part of a Joint Fire Sciences-funded project called the Sagebrush Treatment Evaluation Project (SageSTEP), we quantified the depth distribution of soil OC and N at seven sites experiencing cheatgrass invasion. We sampled plots that retained sagebrush, but represented a continuum of cheatgrass invasion into the understory. Eighty-four soil cores were taken using a mechanically driven diamond-tipped core drill to a depth of 90 cm, or until bedrock or a restrictive layer was encountered. Samples were taken in 15-cm increments, and soil, rocks, and roots were analyzed for OC and total N. We determined that cheatgrass influences the vertical distribution of OC and N within the soil profile and might result in decreased soil OC content below 60 cm. We also found that OC and total N associated with coarse fragments accounted for at least 10% of belowground pools. This emphasizes the need for researchers to quantify nutrients in deep soil horizons and coarse fragments

    Transition From Sagebrush Steppe to Annual Grass (Bromus tectorum): Influence on Belowground Carbon and Nitrogen

    No full text
    Vegetation changes associated with climate shifts and anthropogenic disturbance have major impacts on biogeochemical cycling. Much of the interior western United States currently is dominated by sagebrush (Artemisia tridentata Nutt.) ecosystems. At low to intermediate elevations, sagebrush ecosystems increasingly are influenced by cheatgrass (Bromus tectorum L.) invasion. Little currently is known about the distribution of belowground organic carbon (OC) on these changing landscapes, how annual grass invasion affects OC pools, or the role that nitrogen (N) plays in carbon (C) retention. As part of a Joint Fire Sciences-funded project called the Sagebrush Treatment Evaluation Project (SageSTEP), we quantified the depth distribution of soil OC and N at seven sites experiencing cheatgrass invasion. We sampled plots that retained sagebrush, but represented a continuum of cheatgrass invasion into the understory. Eighty-four soil cores were taken using a mechanically driven diamond- tipped core drill to a depth of 90 cm, or until bedrock or a restrictive layer was encountered. Samples were taken in 15-cm increments, and soil, rocks, and roots were analyzed for OC and total N. We determined that cheatgrass influences the vertical distribution of OC and N within the soil profile and might result in decreased soil OC content below 60 cm. We also found that OC and total N associated with coarse fragments accounted for at least 10% of belowground pools. This emphasizes the need for researchers to quantify nutrients in deep soil horizons and coarse fragments.The Rangeland Ecology & Management archives are made available by the Society for Range Management and the University of Arizona Libraries. Contact [email protected] for further information.Migrated from OJS platform August 202
    corecore