78 research outputs found

    Coherent beam superposition of ten diode lasers with a Dammann grating

    Get PDF
    We demonstrate the use of a binary diffractive optical element in a very simple setup to convert the multilobed beam from a low fill factor array of coherent laser diodes into a quasi-Gaussian beam. The phase profile of the grating is determined with a phase retrieval algorithm. Experimentally, the conversion efficiency reaches more than 44%. We also establish that this setup can be used to make an effective measurement of the coherency of the laser array

    Narrow-line coherently combined tapered laser diodes in a Talbot external cavity with a volume Bragg grating

    Get PDF
    We present the phase locking of an array of index-guided tapered laser diodes. An external cavity based on the self-imaging Talbot effect has been built. A volume Bragg grating is used as the output coupler to stabilize and narrow the spectrum at 976 nm. A power of 1.7 W is achieved in the in-phase single main lobe mode with a high visibility. We have checked that each emitter is locked to the Bragg wavelength with a 100 pm spectrum linewidth. The experimental results compare well with numerical simulations performed with two-dimensional wide-angle finite difference beam propagation method

    Narrow line width operation of a 980 nm gain guided tapered diode laser bar

    Get PDF
    We demonstrate two different schemes for the spectral narrowing of a 12 emitter 980 nm gain guided tapered diode laser bar. In the first scheme, a reflective grating has been used in a Littman Metcalf configuration and the wavelength of the laser emission could be narrowed down from more than 5.5 nm in the free running mode to 0.04 nm (FWHM) at an operating current of 30 A with an output power of 8 W. The spectrum was found to be tunable within a range of 16 nm. In the second scheme, a volume Bragg grating has been used to narrow the wavelength of the laser bar from over 5 nm to less than 0.2 nm with an output of 5 W at 20 A. To our knowledge, this is the first time spectral narrowing has been performed on a gain guided tapered diode laser bar. In the Littman Metcalf configuration, the spectral brightness has been increased by 86 times and in the volume Bragg grating cavity the spectral brightness has been improved over 18 times when compared to the free running operation. These schemes could be also extended for other wavelengths of interest in the future

    Spectral narrowing of a 980 nm tapered diode laser bar

    Get PDF
    International audienceHigh power diode laser bars are interesting in many applications such as solid state laser pumping, material processing, laser trapping, laser cooling and second harmonic generation. Often, the free running laser arrays emit a broad spectrum of the order of several nanometers which limit their scope in wavelength specific applications and hence, it is vital to stabilize the emission spectrum of these devices. In our experiment, we describe the wavelength narrowing of a 12 element 980 nm tapered diode laser bar using a simple Littman configuration. The tapered laser bar which suffered from a big smile has been "smile corrected" using individual phase masks for each emitter. The external cavity consists of the laser bar, both fast and slow axis micro collimators, smile correcting phase mask, 5X beam expanding lens combination, a 1200 lines/mm reflecting grating with 85% efficiency in the first order, a slow axis focusing cylindrical lens of 40 mm focal length and an output coupler which is 10% reflective. In the free running mode, the laser emission spectrum was 6 nm wide at an operating current of 30A. The output power was measured to be in excess of 12W. Under the external cavity operation, the wavelength spread of the laser could be limited less than 0.1 nm with an output power in excess of 8 W at an operating current of 30A. The spectrum was found to be tunable in the range of 20 nm

    Coherent beam combining of high power quasi continuous wave tapered amplifiers

    Get PDF
    International audienceWe demonstrate coherent beam combining of four high brightness tapered amplifiers in pulsed, quasi continuous wave (QCW) operation, seeded by a 976 nm laser diode. The maximum power of 22.7 W was achieved with > 64 % combining efficiency in a close to diffraction limited beam. We discuss turn-on dynamics of tapered amplifiers operated in pulsed mode in detail

    Tunable Single-frequency operation of a diode-pumped Vertical-External Cavity Laser at the Caesium D2 line

    No full text
    International audienceWe report on a diode-pumped vertical external-cavity surface-emitting laser emitting around 852 nm for Cesium atomic clocks experiments. We have designed a 7-quantum-well semiconductor structure optimized for low laser threshold. An output power of 330 mW was achieved for 1.1 W of incident pump power. Furthermore a compact setup was built for low-power single-requency emission. We obtained an output power of 17 mW in a single longitudinal mode, exhibiting both broad (9 nm) and continuous (14 GHz) tunability around the Cesium D2 line. The laser frequency has been stabilized on an atomic transition with residual frequency fluctuations ~ 300 kHz. Through a beatnote experiment the -3 dB laser linewidth has been measured to < 500 kHz over 10 ms

    COMPACT AND ROBUST SINGLE-FREQUENCY DIODE-PUMPED VECSEL AT THE CESIUM D2 LINE FOR ATOMIC CLOCKS

    No full text
    This work reports on an optically-pumped vertical external-cavity surface­emitting laser emitting around 852 nm dedicated to atomic physics experiments with cold Cs atoms. The design of the semiconductor active structure has been optimized to provide a low threshold. A low-power diode-pumped compact prototype has been developed with improved stability. With this setup, we obtained a 17-mW single frequency emission exhibiting large tunability around the Cesium D2 line. The laser linewidth has been measured to less than 500 kHz on a 10 ms time

    900 nm Emission of a Nd:ASL Laser Pumped by an Extended-Cavity Tapered Laser Diode

    Get PDF
    PosterWe describe here the use of a 798-nm-stabilized high-brightness tapered laser diode to pump a Nd:ASL crystal for 900 nm laser operation. An output power of 150 mW is obtained

    Single-frequency diode-pumped semiconductor laser tuned on a Cs transition

    No full text
    Diode-pumped semiconductor lasers have already demonstrated high powers in circular diffraction-limited output beams and single-frequency laser emission. Our work is focused on the design of a laser structure suitable for Cesium (Cs) atomic clock experiments that could merge both properties

    Diode pumping of Nd:ASL and its frequency doubling for blue emission around 450 nm

    Get PDF
    International audienceWe present the diode pumping of a Nd-doped strontium and lanthanum (Nd:ASL) crystal Sr1-xLax-yNdyMgxAl12-xO19 (0.05 ≤ x ≤ 0.5; y = 0.05) for second harmonic generation around 450 nm. In order to fulfill the pumping requirements of this crystal, we have developed a high-brightness pump source based on a tapered amplifier in an extended cavity with a volume Bragg grating for wavelength stabilization. A pump brightness of 110 MW.cm-2sr-1 has been obtained with a linewidth lower than 80 pm at 798 nm. This laser source has been used to pump a Nd:ASL crystal to obtain 300 mW at 906 nm and 53 mW at 453 nm by intracavity doubling with a LBO crystal
    • …
    corecore