7,247 research outputs found

    Evolution of shell structure in neutron-rich calcium isotopes

    Full text link
    We employ interactions from chiral effective field theory and compute the binding energies and low-lying excitations of calcium isotopes with the coupled-cluster method. Effects of three-nucleon forces are included phenomenologically as in-medium two-nucleon interactions, and the coupling to the particle continuum is taken into account using a Berggren basis. The computed ground-state energies and the low-lying 2+ states for the isotopes 42,48,50,52Ca are in good agreement with data, and we predict the excitation energy of the first 2+ state in 54Ca at 1.9 MeV, displaying only a weak sub-shell closure. In the odd-mass nuclei 53,55,61Ca we find that the positive parity states deviate strongly from the naive shell model.Comment: 5 pages, 4 figures; small correction of effective 3NF and slight change of the corresponding parameters; updated figures and tables; main results and conclusions unchange

    Nonharmonic phonons in MgB_2 at elevated temperatures

    Get PDF
    Inelastic neutron scattering was used to measure phonon spectra in MgB_2 and Mg_(0.75)Al_(0.25)B_2 from 7 to 750 K to investigate anharmonicity and adiabatic electron-phonon coupling. First-principles calculations of phonons with a linear response method were performed at multiple unit cell volumes, and the Helmholtz free energy was minimized to obtain the lattice parameters and phonon dynamics at elevated temperature in the quasiharmonic approximation. Most of the temperature dependence of the phonon density of states could be understood with the quasiharmonic approximation, although there was also significant thermal broadening of the phonon spectra. In comparison to Mg_(0.75)Al_(0.25)B_2, in the energy range of 60 to 80 meV the experimental phonon spectra from MgB_2 showed a nonmonotonic change with temperature around 500 K. This may originate from a change with temperature of the adiabatic electron-phonon coupling

    High-spin structures of 136Cs

    Get PDF
    Odd-odd 136Cs nuclei have been produced in the 18O + 208Pb and 12C + 238U fusion-fission reactions and their gamma rays studied with the Euroball array. The high-spin level scheme has been built up to ~ 4.7 MeV excitation energy and spin I ~ 16 hbar from the triple gamma-ray coincidence data. The configurations of the three structures observed above ~ 2 MeV excitation energy are first discussed by analogy with the proton excitations identified in the semi-magic 137Cs nucleus, which involve the three high-j orbits lying above the Z=50 gap, pi g_{7/2}, pi d_{5/2} and pi h_{11/2}. This is confirmed by the results of shell-model calculations performed in this work.Comment: 6 pages, 4 figures, 3 table

    The City: Art and the Urban Environment

    Full text link
    The City: Art and the Urban Environment is the fifth annual exhibition curated by students enrolled in the Art History Methods class. This exhibition draws on the students’ newly developed expertise in art-historical methodologies and provides an opportunity for sustained research and an engaged curatorial experience. Working with a selection of paintings, prints, and photographs, students Angelique Acevedo ’19, Sidney Caccioppoli ’21, Abigail Coakley ’20, Chris Condon ’18, Alyssa DiMaria ’19, Carolyn Hauk ’21, Lucas Kiesel ’20, Noa Leibson ’20, Erin O’Brien ’19, Elise Quick ’21, Sara Rinehart ’19, and Emily Roush ’21 carefully consider depictions of the urban environment in relation to significant social, economic, artistic, and aesthetic developments. [excerpt]https://cupola.gettysburg.edu/artcatalogs/1029/thumbnail.jp

    Choosing Well Your Opponents: How to Guide the Synthesis of Programmatic Strategies

    Full text link
    This paper introduces Local Learner (2L), an algorithm for providing a set of reference strategies to guide the search for programmatic strategies in two-player zero-sum games. Previous learning algorithms, such as Iterated Best Response (IBR), Fictitious Play (FP), and Double-Oracle (DO), can be computationally expensive or miss important information for guiding search algorithms. 2L actively selects a set of reference strategies to improve the search signal. We empirically demonstrate the advantages of our approach while guiding a local search algorithm for synthesizing strategies in three games, including MicroRTS, a challenging real-time strategy game. Results show that 2L learns reference strategies that provide a stronger search signal than IBR, FP, and DO. We also simulate a tournament of MicroRTS, where a synthesizer using 2L outperformed the winners of the two latest MicroRTS competitions, which were programmatic strategies written by human programmers.Comment: International Joint Conference on Artificial Intelligence (IJCAI) 202

    Absence of long-range chemical ordering in equimolar FeCoCrNi

    Get PDF
    Equimolar FeCoCrNi alloys have been the topic of recent research as "high-entropy alloys," where the name is derived from the high configurational entropy of mixing for a random solid solution. Despite their name, no systematic study of ordering in this alloy system has been performed to date. Here, we present results from anomalous x-ray scattering and neutron scattering on quenched and annealed samples. An alloy of FeNi_3 was prepared in the same manner to act as a control. Evidence of long-range chemical ordering is clearly observed in the annealed FeNi_3 sample from both experimental techniques. The FeCoCrNi sample given the same heat treatment lacks long-range chemical order

    Non-Markovian modeling of protein folding.

    Get PDF
    We extract the folding free energy landscape and the time-dependent friction function, the two ingredients of the generalized Langevin equation (GLE), from explicit-water molecular dynamics (MD) simulations of the α-helix forming polypeptide [Formula: see text] for a one-dimensional reaction coordinate based on the sum of the native H-bond distances. Folding and unfolding times from numerical integration of the GLE agree accurately with MD results, which demonstrate the robustness of our GLE-based non-Markovian model. In contrast, Markovian models do not accurately describe the peptide kinetics and in particular, cannot reproduce the folding and unfolding kinetics simultaneously, even if a spatially dependent friction profile is used. Analysis of the GLE demonstrates that memory effects in the friction significantly speed up peptide folding and unfolding kinetics, as predicted by the Grote-Hynes theory, and are the cause of anomalous diffusion in configuration space. Our methods are applicable to any reaction coordinate and in principle, also to experimental trajectories from single-molecule experiments. Our results demonstrate that a consistent description of protein-folding dynamics must account for memory friction effects

    High-spin states with seniority v=4,4,6 in 119-126Sn

    Full text link
    The 119-126Sn nuclei have been produced as fission fragments in two reactions induced by heavy ions: 12C+238U at 90 MeV bombarding energy, 18O+208Pb at 85 MeV. Their level schemes have been built from gamma rays detected using the Euroball array. High-spin states located above the long-lived isomeric states of the even- and odd-A 120-126Sn nuclei have been identified. Moreover isomeric states lying around 4.5 MeV have been established in 120,122,124,126Sn from the delayed coincidences between the fission fragment detector SAPhIR and the Euroball array. The states located above 3-MeV excitation energy are ascribed to several broken pairs of neutrons occupying the nu h11/2 orbit. The maximum value of angular momentum available in such a high-j shell, i.e. for mid-occupation and the breaking of the three neutron pairs, has been identified. This process is observed for the first time in spherical nuclei.Comment: 20 pages, 22 figures, 12 tables, accepted for publication in Physical Review

    Jellyfish and Fish Solve the Challenges of Turning Dynamics Similarly to Achieve High Maneuverability

    Get PDF
    Turning maneuvers by aquatic animals are essential for fundamental life functions such as finding food or mates while avoiding predation. However, turning requires resolution of a fundamental dilemma based in rotational mechanics: the force powering a turn (torque) is favored by an expanded body configuration that maximizes lever arm length, yet minimizing the resistance to a turn (the moment of inertia) is favored by a contracted body configuration. How do animals balance these opposing demands? Here, we directly measure instantaneous forces along the bodies of two animal models—the radially symmetric Aurelia aurita jellyfish, and the bilaterally symmetric Danio rerio zebrafish—to evaluate their turning dynamics. Both began turns with a small, rapid shift in body kinematics that preceded major axial rotation. Although small in absolute magnitude, the high fluid accelerations achieved by these initial motions generated powerful pressure gradients that maximized torque at the start of a turn. This pattern allows these animals to initially maximize torque production before major body curvature changes. Both animals then subsequently minimized the moment of inertia, and hence resistance to axial rotation, by body bending. This sequential solution provides insight into the advantages of re-arranging mass by bending during routine swimming turns
    • …
    corecore