37 research outputs found

    Targeted therapies in systemic sclerosis, myositis, antiphospholipid syndrome, and Sjögren's syndrome

    Get PDF
    Targeted therapies using biological disease-modifying antirheumatic drugs (bDMARDs) and small molecule synthetic drugs have revolutionized rheumatological practice. Initially developed for the treatment of immune arthritis (rheumatoid arthritis, psoriatic arthritis, and spondylarthritis), both bDMARDs and small molecule synthetic drugs are now increasingly entering the space of connective tissue disease (CTD) treatment. Recent clinical trial data in systemic sclerosis (SSc) have been particularly encouraging with positive effects on outcomes having been observed with nintedanib preventing the decline of lung function in patients with SSc-related interstitial lung disease. Randomized trials targeting B-cells by rituximab in primary Sjogren's syndrome have led to mixed results. Novel strategies to target B-cells in primary Sjögren's syndrome including ianalumab and belimumab are underway and will hopefully result in clear treatment effects. Inflammatory idiopathic myositis (polymyositis (PM) and dermatomyositis (DM)) and antiphospholid syndrome are proving to be more difficult to tackle but are nonetheless the subject of ongoing studies. To what extent new compounds can replace more traditional immunosuppressive drugs remains to be determined, but if the experience in immune arthritis has taught us anything it is that combination therapy may be the way to go

    Association of autoantibodies with the IFN signature and NETosis in patients with systemic lupus erythematosus

    Get PDF
    Objective: Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by a variety of disease symptoms and an unpredictable clinical course. To improve treatment outcome, stratification based on immunological manifestations commonly seen in patients with SLE such as autoantibodies, type I interferon (IFN) signature and neutrophil extracellular trap (NET) release may help. It is assumed that there is an association between these immunological phenomena, since NET release induces IFN production and IFN induces autoantibody formation via B-cell activation. Here we studied the association between autoantibodies, the IFN signature, NET release, and clinical manifestations in patients with SLE. Methods: We performed principal component analysis (PCA) and hierarchical clustering of 57 SLE-related autoantibodies in 25 patients with SLE. We correlated each autoantibody to the IFN signature and NET inducing capacity. Results: We observed two distinct clusters: one cluster contained mostly patients with a high IFN signature. Patients in this cluster often present with cutaneous lupus, and have higher anti-dsDNA concentrations. Another cluster contained a mix of patients with a high and low IFN signature. Patients with high and low NET inducing capacity were equally distributed between the clusters. Variance between the clusters is mainly driven by antibodies against histones, RibP2, RibP0, EphB2, RibP1, PCNA, dsDNA, and nucleosome. In addition, we found a trend towards increased concentrations of autoantibodies against EphB2, RibP1, and RNP70 in patients with an IFN signature. We found a negative correlation of NET inducing capacity with anti-FcER (r = −0.530; p = 0.007) and anti-PmScl100 (r = −0.445; p = 0.03). Conclusion: We identified a subgroup of patients with an IFN signature that express increased concentrations of antibodies against DNA and RNA-binding proteins, which can be useful for further patient stratification and a more targeted therapy. We did not find positive associations between autoantibodies and NET inducing capacity. Our study further strengthens the evidence of a correlation between RNA-binding autoantibodies and the IFN signature

    microRNA downregulation in plasmacytoid dendritic cells in interferon-positive systemic lupus erythematosus and antiphospholipid syndrome

    Get PDF
    To investigate miRNA expression in relation to transcriptomic changes in plasmacytoid dendritic cells (pDCs) in SLE and APS. pDCs are major producers of IFN\u3b1 in SLE and APS, and miRNAs are emerging as regulators of pDC activation

    Serum microRNA screening and functional studies reveal miR-483-5p as a potential driver of fibrosis in systemic sclerosis

    Get PDF
    Abstract Objective MicroRNAs (miRNAs) are regulatory molecules, which have been addressed as potential biomarkers and therapeutic targets in rheumatic diseases. Here, we investigated the miRNA signature in the serum of systemic sclerosis (SSc) patients and we further assessed their expression in early stages of the disease. Methods The levels of 758 miRNAs were evaluated in the serum of 26 SSc patients as compared to 9 healthy controls by using an Openarray platform. Three miRNAs were examined in an additional cohort of 107 SSc patients and 24 healthy donors by single qPCR. MiR-483-5p expression was further analysed in the serum of patients with localized scleroderma (LoS) (n = 22), systemic lupus erythematosus (SLE) (n = 33) and primary Sjogren's syndrome (pSS) (n = 23). The function of miR-483-5p was examined by transfecting miR-483-5p into primary human dermal fibroblasts and pulmonary endothelial cells. Results 30 miRNAs were significantly increased in patients with SSc. Of these, miR-483-5p showed reproducibly higher levels in an independent SSc cohort and was also elevated in patients with preclinical-SSc symptoms (early SSc). Notably, miR-483-5p was not differentially expressed in patients with SLE or pSS, whereas it was up-regulated in LoS, indicating that this miRNA could be involved in the development of skin fibrosis. Consistently, miR-483-5p overexpression in fibroblasts and endothelial cells modulated the expression of fibrosis-related genes. Conclusions Our findings showed that miR-483-5p is up-regulated in the serum of SSc patients, from the early stages of the disease onwards, and indicated its potential function as a fine regulator of fibrosis in SSc

    Galectin-9 is an easy to measure biomarker for the interferon signature in systemic lupus erythematosus and antiphospholipid syndrome

    Get PDF
    The interferon (IFN) signature is related to disease activity and vascular disease in systemic lupus erythematosus (SLE) and antiphospholipid syndrome (APS) and represents a promising therapeutic target. Quantification of the IFN signature is currently performed by gene expression analysis, limiting its current applicability in clinical practice. Therefore, the objective of this study was to establish an easy to measure biomarker for the IFN signature

    B-Cells and BAFF in Primary Antiphospholipid Syndrome, Targets for Therapy?

    Get PDF
    Primary antiphospholipid syndrome (PAPS) is a systemic autoimmune disease characterized by thrombosis, pregnancy morbidity, and the presence of antiphospholipid antibodies (aPL). Anticoagulants form the mainstay of treatment in PAPS. A growing number of studies suggest a previously underappreciated role of the immune system in the pathophysiology of PAPS. Although B-cells are strongly implicated in the pathophysiology of other autoimmune diseases such as systemic lupus erythematosus (SLE), little is known about the role of B-cells in PAPS. Shifts in B-cell subsets including increases in plasmablasts and higher levels of BAFF are present in patients with PAPS. However, while treatment with rituximab and belimumab may ameliorate thrombotic and non-thrombotic manifestations of PAPS, these treatments do not reduce aPL serum levels, suggesting that B-cells contribute to the pathophysiology of APS beyond the production of autoantibodies

    Targeting thromboinflammation in antiphospholipid syndrome.

    No full text
    Antiphospholipid syndrome (APS) is a systemic autoimmune disease, where persistent presence of antiphospholipid antibodies (aPL) leads to thrombotic and obstetric complications. APS is a paradigmatic thromboinflammatory disease. Thromboinflammation is a pathophysiological mechanism coupling inflammation and thrombosis, which contributes to the pathophysiology of cardiovascular disease. APS can serve as a model to unravel mechanisms of thromboinflammation and the relationship between innate immune cells and thrombosis. Monocytes are activated by aPL into a proinflammatory and procoagulant phenotype, producing proinflammatory cytokines such as tumor necrosis factor α, interleukin 6, as well as tissue factor. Important cellular signaling pathways involved are the NF-κB-pathway, mammalian target of rapamycin (mTOR) signaling, and the NOD-, LRR-, and pyrin domain-containing protein 3 inflammasome. All of these may serve as future therapeutic targets. Neutrophils produce neutrophil extracellular traps in response to aPL, and this leads to thrombosis. Thrombosis in APS also stems from increased interaction of neutrophils with endothelial cells through P-selectin glycoprotein ligand-1. NETosis can be targeted not only with several experimental therapeutics, such as DNase, but also through the redirection of current therapies such as defibrotide and the antiplatelet agent dipyridamole. Activation of platelets by aPL leads to a procoagulant phenotype. Platelet-leukocyte interactions are increased, possibly mediated by increased levels of soluble P-selectin and soluble CD40-ligand. Platelet-directed future treatment options involve the inhibition of several platelet receptors activated by aPL, as well as mTOR inhibition. This review discusses mechanisms underlying thromboinflammation in APS that present targetable therapeutic options, some of which may be generalizable to other thromboinflammatory diseases
    corecore