25,292 research outputs found

    Identifying Health Centers in Honduras Infested with Rhodnius Prolixus Using the Seroprevalence of Chagas Disease in Children Younger than 13 Years.

    Get PDF
    The objective of this study is to determine if a Chagas disease protocol starting with a serological survey is as reliable at identifying insect-infested areas as one using the gold standard entomological survey. The study found that health center areas infested with Rhodnius prolixus were identified using a threshold seroprevalence of 0.1%. The serological survey took half the time and was 30% less expensive than the entomological survey. Developing countries with limited resources may find this strategy useful in combating Chagas disease. This strategy also identifies seropositive children, which facilitates their treatment

    Evaluation of graphite composite materials for bearingless helicopter rotor application

    Get PDF
    Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced

    Acoustic and aerodynamic performance of a 1.83-meter (6-ft) diameter 1.25-pressure-ratio fan (QF-8)

    Get PDF
    A 1.25-pressure-ratio 1.83-meter (6-ft) tip diameter experimental fan stage with characteristics suitable for engine application on STOL aircraft was tested for acoustic and aerodynamic performance. The design incorporated proven features for low noise, including absence of inlet guide vanes, low rotor blade tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator blade rows. The fan was operated with five exhaust nozzle areas. The stage noise levels generally increased with a decrease in nozzle area. Separation of the acoustic one-third octave results into broadband and pure-tone components showed the broadband noise to be greater than the corresponding pure-tone components. The sideline perceived noise was highest in the rear quadrants. The acoustic results of QF-8 were compared with those of two similar STOL application fans in the test series. The QF-8 had somewhat higher relative noise levels than those of the other two fans. The aerodynamic results of QF-8 and the other two fans were compared with corresponding results from 50.8-cm (20-in.) diam scale models of these fans and design values. Although the results for the full-scale and scale models of the other two fans were in reasonable agreement for each design, the full-scale fan QF-8 results showed poor performance compared with corresponding model results and design expectations. Facility effects of the full-scale fan QF-8 installation were considered in analyzing this discrepancy

    AN EXPERIMENTAL INVESTIGATION OF GASEOUS-FILM COOLING OF A ROCKET MOTOR

    Get PDF
    Gaseous-film cooling of rocket combustion chambe

    Acoustic and aerodynamic performance of a 1.83 meter (6 foot) diameter 1.2 pressure ratio fan (QF-6)

    Get PDF
    A 1.2-pressure-ratio, 1.83-meter-(6-ft-) diameter experimental fan stage with characteristics suitable for use in STOL aircraft engines was tested for acoustic and aerodynamic performance. The design incorporated features for low noise, including absence of inlet guide vanes, low rotor-blade-tip speed, low aerodynamic blade loading, and long axial spacing between the rotor and stator rows. The stage was run with four nozzles of different area. The perceived noise along a 152.4 meter (500-ft) sideline was rear-quadrant dominated with a maximum design-point level of 103.9 PNdb. The acoustic 1/3-octave results were analytically separated into broadband and pure-tone components. It was found that the stage noise levels generally increase with a decrease in nozzle area, with this increase observed primarily in the broadband noise component. A stall condition was documented acoustically with a 90-percent-of-design-area nozzle

    Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13)

    Get PDF
    Forward noise and overall aerodynamic performance data are presented for a high-tip-speed fan having rotor blade airfoils designed to alter the conventional leading-edge bow shocks to weak, oblique shocks which are swallowed within the interblade channels. It was anticipated that the swallowed shocks would minimize the generation of multiple-pure-tone noise. In the speed range where the shocks presumably were swallowed, the multiple-tone noise was lowered only about 3 decibels. Comparison with several high-speed fans on a thrust-corrected basis indicates that the present fan was the quietest in total forward noise at low speeds but offered no advantage at high speeds

    Acoustic and aerodynamic performance of a 1.5-pressure-ratio, 1.83-meter (6 ft) diameter fan stage for turbofan engines (QF-2)

    Get PDF
    The fan was externally driven by an electric motor. Design features for low-noise generation included the elimination of inlet guide vanes, long axial spacing between the rotor and stator blade rows, and the selection of blade-vane numbers to achieve duct-mode cutoff. The fan QF-2 results were compared with those of another full-scale fan having essentially identical aerodynamic design except for nozzle geometry and the direction of rotation. The fan QF-2 aerodynamic results were also compared with those obtained from a 50.8 cm rotor-tip-diameter model of the reverse rotation fan QF-2 design. Differences in nozzle geometry other than exit area significantly affected the comparison of the results of the full-scale fans

    Forward acoustic performance of a model turbofan designed for a high specific flow (QF-14)

    Get PDF
    Forward noise and overall aerodynamic performance are presented for a high-tip-speed fan having an exceptionally high average axial Mach number at the rotor inlet. This high Mach number is intended to attenuate forward noise at both the design-speed takeoff point, and at the unconventional low-pressure-ratio, design-speed approach point. As speed was increased near design, all forward noise components were reduced, and rear noise in the discharge duct was increased, indicating that the high Mach number flow at the rotor face is attenuating forward noise at takeoff. The fan at takeoff is some 5.5 to 11 dB quieter than several reference fans. Data at the point closest to approach indicated tentatively that the design-speed approach mode was 3 dB quieter than the conventional mode
    • …
    corecore