6,678 research outputs found

    Salmonella in Livestock

    Get PDF
    Salmonella in livestock discusses what salmonella are and why they are important. Addressed are sources of infection, prevention and treatment, and precautions for human food products. Included is information on the disease in swine, cattle, poultry, and other animals

    Experimental study of frost detectability on planetary surfaces using multicolor photometry and polarimetry

    Get PDF
    When the temperature and pressure conditions allow it, water ice can deposit as frost on the regolith of planetary surfaces. Frost is an important indicator of the surface physical conditions, and may trigger geological processes by its deposition and sublimation. This works aims to explore, experimentally, the possibility of detecting early stages of frost formation and to characterize its spectrophotometric and spectropolarimetric signatures in visible reflected light. We deposit ice on top of different regolith simulants, measuring the dust temperature, the thickness, and the morphology of the frost through a microscope, while measuring the reflected light at phase angles of 50° and 61°, and the linear polarization at phase angles of 5° and 16°, at three different wavelengths (450, 550, and 750 nm). We show that both the spectral slope (in particular between 450–550 nm), and the difference of polarization between 450 and 750 nm are efficient methods to detect frost layers with thicknesses as low as 10 to 20 μm. Furthermore, we find that the linear polarization at 16° relates to the temperature of the regolith i.e. the type of the deposited ice crystalline structure

    Genetic and Neuroanatomical Support for Functional Brain Network Dynamics in Epilepsy

    Full text link
    Focal epilepsy is a devastating neurological disorder that affects an overwhelming number of patients worldwide, many of whom prove resistant to medication. The efficacy of current innovative technologies for the treatment of these patients has been stalled by the lack of accurate and effective methods to fuse multimodal neuroimaging data to map anatomical targets driving seizure dynamics. Here we propose a parsimonious model that explains how large-scale anatomical networks and shared genetic constraints shape inter-regional communication in focal epilepsy. In extensive ECoG recordings acquired from a group of patients with medically refractory focal-onset epilepsy, we find that ictal and preictal functional brain network dynamics can be accurately predicted from features of brain anatomy and geometry, patterns of white matter connectivity, and constraints complicit in patterns of gene coexpression, all of which are conserved across healthy adult populations. Moreover, we uncover evidence that markers of non-conserved architecture, potentially driven by idiosyncratic pathology of single subjects, are most prevalent in high frequency ictal dynamics and low frequency preictal dynamics. Finally, we find that ictal dynamics are better predicted by white matter features and more poorly predicted by geometry and genetic constraints than preictal dynamics, suggesting that the functional brain network dynamics manifest in seizures rely on - and may directly propagate along - underlying white matter structure that is largely conserved across humans. Broadly, our work offers insights into the generic architectural principles of the human brain that impact seizure dynamics, and could be extended to further our understanding, models, and predictions of subject-level pathology and response to intervention

    A novel push-pull central-lever mechanism reduces peak forces and energy-cost compared to hand-rim wheelchair propulsion during a controlled lab-based experiment

    Get PDF
    BACKGROUND: Hand-rim wheelchair propulsion is straining and mechanically inefficient, often leading to upper limb complaints. Previous push–pull lever propulsion mechanisms have shown to perform better or equal in efficiency and physiological strain. Propulsion biomechanics have not been evaluated thus far. A novel push–pull central-lever propulsion mechanism is compared to conventional hand-rim wheelchair propulsion, using both physiological and biomechanical outcomes under low-intensity steady-state conditions on a motor driven treadmill. METHODS: In this 5 day (distributed over a maximum of 21 days) between-group experiment, 30 able-bodied novices performed 60 min (5 × 3 × 4 min) of practice in either the push–pull central lever wheelchair (n = 15) or the hand-rim wheelchair (n = 15). At the first and final sessions cardiopulmonary strain, propulsion kinematics and force production were determined in both instrumented propulsion mechanisms. Repeated measures ANOVA evaluated between (propulsion mechanism type), within (over practice) and interaction effects. RESULTS: Over practice, both groups significantly improved on all outcome measures. After practice the peak forces during the push and pull phase of lever propulsion were considerably lower compared to those in the handrim push phase (42 ± 10 & 46 ± 10 vs 63 ± 21N). Concomitantly, energy expenditure was found to be lower as well (263 ± 45 vs 298 ± 59W), on the other hand gross mechanical efficiency (6.4 ± 1.5 vs 5.9 ± 1.3%), heart-rate (97 ± 10 vs 98 ± 10 bpm) and perceived exertion (9 ± 2 vs 10 ± 1) were not significantly different between modes. CONCLUSION: The current study shows the potential benefits of the newly designed push–pull central-lever propulsion mechanism over regular hand rim wheelchair propulsion. The much lower forces and energy expenditure might help to reduce the strain on the upper extremities and thus prevent the development of overuse injury. This proof of concept in a controlled laboratory experiment warrants continued experimental research in wheelchair-users during daily life

    Adverse Event Assessment of Antimuscarinics for Treating Overactive Bladder: A Network Meta-Analytic Approach

    Get PDF
    BACKGROUND: Overactive bladder (OAB) affects the lives of millions of people worldwide and antimuscarinics are the pharmacological treatment of choice. Meta-analyses of all currently used antimuscarinics for treating OAB found similar efficacy, making the choice dependent on their adverse event profiles. However, conventional meta-analyses often fail to quantify and compare adverse events across different drugs, dosages, formulations, and routes of administration. In addition, the assessment of the broad variety of adverse events is dissatisfying. Our aim was to compare adverse events of antimuscarinics using a network meta-analytic approach that overcomes shortcomings of conventional analyses. METHODS: Cochrane Incontinence Group Specialized Trials Register, previous systematic reviews, conference abstracts, book chapters, and reference lists of relevant articles were searched. Eligible studies included randomized controlled trials comparing at least one antimuscarinic for treating OAB with placebo or with another antimuscarinic, and adverse events as outcome measures. Two authors independently extracted data. A network meta-analytic approach was applied allowing for joint assessment of all adverse events of all currently used antimuscarinics while fully maintaining randomization. RESULTS: 69 trials enrolling 26'229 patients were included. Similar overall adverse event profiles were found for darifenacin, fesoterodine, transdermal oxybutynin, propiverine, solifenacin, tolterodine, and trospium chloride but not for oxybutynin orally administered when currently used starting dosages were compared. CONCLUSIONS: The proposed generally applicable transparent network meta-analytic approach summarizes adverse events in an easy to grasp way allowing straightforward benchmarking of antimuscarinics for treating OAB in clinical practice. Most currently used antimuscarinics seem to be equivalent first choice drugs to start the treatment of OAB except for oral oxybutynin dosages of ≥ 10 mg/d which may have more unfavorable adverse event profiles

    High-Transconductance Graphene Solution-Gated Field Effect Transistors

    Get PDF
    In this work, we report on the electronic properties of solution-gated field effect transistors (SGFETs) fabricated using large-area graphene. Devices prepared both with epitaxially grown graphene on SiC as well as with chemical vapor deposition grown graphene on Cu exhibit high transconductances, which are a consequence of the high mobility of charge carriers in graphene and the large capacitance at the graphene/water interface. The performance of graphene SGFETs, in terms of gate sensitivity, is compared to other SGFET technologies and found to be clearly superior, confirming the potential of graphene SGFETs for sensing applications in electrolytic environments.Comment: The following article has been submitted to Applied Physics Letters. After it is published, it will be found at apl.aip.or

    A Scoping Review on Shoulder Injuries of Wheelchair Tennis Players:Potential Risk-Factors and Musculoskeletal Adaptations

    Get PDF
    Wheelchair tennis players are prone to develop shoulder injuries, due to the combination of wheelchair propulsion, overhead activities and daily wheelchair activities. A methodical literature search was conducted to identify articles on shoulder complaints in wheelchair tennis, wheelchair sports and tennis. The aims were to identify (1) type of shoulder complaints; (2) possible risk factors for the development of shoulder injuries; (3) musculoskeletal adaptations in the shoulder joint in wheelchair tennis players. Fifteen papers were included in this review, five on wheelchair tennis, three on wheelchair sports and seven on tennis. Type of shoulder complaints were acromioclavicular pathology, osteoarthritic changes, joint effusion and rotator cuff tears. Possible risk factors for the development of shoulder injuries in wheelchair tennis are overhead movements, repetitive activation of the anterior muscle chain and internal rotators, as well as a higher spinal cord injury level. Muscular imbalance with higher values for the internal rotators, increase in external range of motion, decrease in internal range of motion and reduced total arc of motion were the most common proposed musculoskeletal adaptations due to an unbalanced load. These presented risk factors and musculoskeletal adaptations might help researchers, coaches and wheelchair tennis players to prevent shoulder injuries
    corecore