22,255 research outputs found
Evaluation of graphite composite materials for bearingless helicopter rotor application
Small scale combined load fatigue tests were conducted on twelve unidirectional graphite-glass scrim-epoxy composite specimens. The specimens were 1 in. (2.54 cm) wide by 0.1 in. (.25 cm) thick by 5 in. (12.70 cm) long. The fatigue data was developed for the preliminary design of the spar for a bearingless helicopter main rotor. Three loading conditions were tested. Combinations of steady axial, vibratory torsion, and vibratory bending stresses were chosen to simulate the calculated stresses which exist at the root and at the outboard end of the pitch change section of the spar. Calculated loads for 150 knots (77.1 m/sec) level flight were chosen as the baseline condition. Test stresses were varied up to 4.4 times the baseline stress levels. Damage resulted in reduced stiffness; however, in no case was complete fracture of the specimen experienced
Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13)
Forward noise and overall aerodynamic performance data are presented for a high-tip-speed fan having rotor blade airfoils designed to alter the conventional leading-edge bow shocks to weak, oblique shocks which are swallowed within the interblade channels. It was anticipated that the swallowed shocks would minimize the generation of multiple-pure-tone noise. In the speed range where the shocks presumably were swallowed, the multiple-tone noise was lowered only about 3 decibels. Comparison with several high-speed fans on a thrust-corrected basis indicates that the present fan was the quietest in total forward noise at low speeds but offered no advantage at high speeds
Acoustic evaluation of a novel swept-rotor fan
Inlet noise and aerodynamic performance are presented for a high tip speed fan designed with rotor blade leading edge sweep that gives a subsonic component of inlet Mach number normal to the edge at all radii. The intent of the design was to minimize the generation of rotor leading edge shock waves thereby minimizing multiple pure tone noise. Sound power level and spectral comparisons are made with several high-speed fans of conventional design. Results show multiple pure tone noise at levels below those of some of the other fans and this noise was initiated at a higher tip speed. Aerodynamic performance of the fan did not meet design goals for this first build which applied conventional design procedures to the swept fan geometry
Near-Field Radio Holography of Large Reflector Antennas
We summarise the mathematical foundation of the holographic method of
measuring the reflector profile of an antenna or radio telescope. In
particular, we treat the case, where the signal source is located at a finite
distance from the antenna under test, necessitating the inclusion of the
so-called Fresnel field terms in the radiation integrals. We assume a ``full
phase'' system with reference receiver to provide the reference phase. We
describe in some detail the hardware and software implementation of the system
used for the holographic measurement of the 12m ALMA prototype submillimeter
antennas. We include a description of the practicalities of a measurement and
surface setting. The results for both the VertexRSI and AEC
(Alcatel-EIE-Consortium) prototype ALMA antennas are presented.Comment: 14 pages, 14 figures, to appear in IEEE Antennas and Propagation
Magazine, Vol. 49, No. 5, October 2007. Version 2 includes nice mug-shots of
the author
Consistent Gravitationally-Coupled Spin-2 Field Theory
Inspired by the translational gauge structure of teleparallel gravity, the
theory for a fundamental massless spin-2 field is constructed. Accordingly,
instead of being represented by a symmetric second-rank tensor, the fundamental
spin-2 field is assumed to be represented by a spacetime (world) vector field
assuming values in the Lie algebra of the translation group. The flat-space
theory naturally emerges in the Fierz formalism and is found to be equivalent
to the usual metric-based theory. However, the gravitationally coupled theory,
with gravitation itself described by teleparallel gravity, is shown not to
present the consistency problems of the spin-2 theory constructed on the basis
of general relativity.Comment: 16 pages, no figures. V2: Presentation changes, including addition of
a new sub-section, aiming at clarifying the text; version accepted for
publication in Class. Quantum Grav
Phase transition in the Countdown problem
Here we present a combinatorial decision problem, inspired by the celebrated
quiz show called the countdown, that involves the computation of a given target
number T from a set of k randomly chosen integers along with a set of
arithmetic operations. We find that the probability of winning the game
evidences a threshold phenomenon that can be understood in the terms of an
algorithmic phase transition as a function of the set size k. Numerical
simulations show that such probability sharply transitions from zero to one at
some critical value of the control parameter, hence separating the algorithm's
parameter space in different phases. We also find that the system is maximally
efficient close to the critical point. We then derive analytical expressions
that match the numerical results for finite size and permit us to extrapolate
the behavior in the thermodynamic limit.Comment: Submitted for publicatio
Experimental recovery of a qubit from partial collapse
We describe and implement a method to restore the state of a single qubit, in
principle perfectly, after it has partially collapsed. The method resembles the
classical Hahn spin-echo, but works on a wider class of relaxation processes,
in which the quantum state partially leaves the computational Hilbert space. It
is not guaranteed to work every time, but successful outcomes are heralded. We
demonstrate using a single trapped ion better performance from this recovery
method than can be obtained employing projection and post-selection alone. The
demonstration features a novel qubit implementation that permits both partial
collapse and coherent manipulations with high fidelity.Comment: 5 pages, 3 figure
- …