19,372 research outputs found

    Mentoring to reduce antisocial behaviour in childhood

    Get PDF
    The effects of social interventions need to be examined in real life situations as well as studie

    The intergenerational relationship between conditional cash transfers and newborn health

    Get PDF
    BACKGROUND: Lack of nutrition, inadequate housing, low education and limited access to quality care can negatively affect children's health over their lifetime. Implemented in 2003, the Bolsa Familia ("Family Stipend") Program (PBF) is a conditional cash transfer program targeting poor households in Brazil. This study investigates the long-term benefits of cash transfers through intergenerational transmission of health and poverty by assessing the early life exposure of the mother to the PBF. METHODS: We used data from the 100M SINASC-SIM cohort compiled and managed by the Center for Data and Knowledge Integration for Health (CIDACS), containing information about participation in the PBF and socioeconomic and health indicators. We analyzed five measures of newborn health: low (less than 2,500 g) and very low (less than 1,500 g) birth weight, premature (less than 37 weeks of gestation) and very premature (less than 28 weeks of gestation) birth, and the presence of some type of malformation (according to ICD-10 codes). Furthermore, we measured the early life exposure to the PBF of the mother as PBF coverage in the previous decade in the city where the mother was born. We applied multilevel logistic regression models to assess the associations between birth outcomes and PBF exposures. RESULTS: Results showed that children born in a household where the mother received BF were less likely to have low birth weight (OR 0.93, CI; 0.92-0.94), very low birth weight (0.87, CI; 0.84-0.89), as well as to be born after 37 weeks of gestation (OR 0.98, CI; 0.97-0.99) or 28 weeks of gestation (OR 0.93, CI; 0.88-0.97). There were no significant associations between households where the mother received BF and congenital malformation. On average, the higher the early life exposure to the PBF of the mother, the lower was the prevalence of low birth weight, very low birth weight and congenital malformation of the newborn. No trend was noted for preterm birth. CONCLUSION: The PBF might have indirect intergenerational effects on children's health. These results provide important implications for policymakers who have to decide how to effectively allocate resources to improve child health

    Microwave control electrodes for scalable, parallel, single-qubit operations in a surface-electrode ion trap

    Full text link
    We propose a surface ion trap design incorporating microwave control electrodes for near-field single-qubit control. The electrodes are arranged so as to provide arbitrary frequency, amplitude and polarization control of the microwave field in one trap zone, while a similar set of electrodes is used to null the residual microwave field in a neighbouring zone. The geometry is chosen to reduce the residual field to the 0.5% level without nulling fields; with nulling, the crosstalk may be kept close to the 0.01% level for realistic microwave amplitude and phase drift. Using standard photolithography and electroplating techniques, we have fabricated a proof-of-principle electrode array with two trapping zones. We discuss requirements for the microwave drive system and prospects for scalability to a large two-dimensional trap array.Comment: 8 pages, 6 figure

    High-fidelity quantum logic gates using trapped-ion hyperfine qubits

    Full text link
    We demonstrate laser-driven two-qubit and single-qubit logic gates with fidelities 99.9(1)% and 99.9934(3)% respectively, significantly above the approximately 99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed/fidelity trade-off for the two-qubit gate, for gate times between 3.8μ\mus and 520μ\mus, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.Comment: 1 trap, 2 ions, 3 nines. Detailed write-up of arXiv:1406.5473 including single-qubit gate data als

    High-fidelity trapped-ion quantum logic using near-field microwaves

    Full text link
    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated ion trap. We measure a gate fidelity of 99.7(1)\%, which is above the minimum threshold required for fault-tolerant quantum computing. The gate is applied directly to 43^{43}Ca+^+ "atomic clock" qubits (coherence time T2∗≈50 sT_2^*\approx 50\,\mathrm{s}) using the microwave magnetic field gradient produced by a trap electrode. We introduce a dynamically-decoupled gate method, which stabilizes the qubits against fluctuating a.c.\ Zeeman shifts and avoids the need to null the microwave field

    Search for correlation effects in linear chains of trapped ions

    Get PDF
    We report a precise search for correlation effects in linear chains of 2 and 3 trapped Ca+ ions. Unexplained correlations in photon emission times within a linear chain of trapped ions have been reported, which, if genuine, cast doubt on the potential of an ion trap to realize quantum information processing. We observe quantum jumps from the metastable 3d 2D_{5/2} level for several hours, searching for correlations between the decay times of the different ions. We find no evidence for correlations: the number of quantum jumps with separations of less than 10 ms is consistent with statistics to within errors of 0.05%; the lifetime of the metastable level derived from the data is consistent with that derived from independent single-ion data at the level of the experimental errors 1%; and no rank correlations between the decay times were found with sensitivity to rank correlation coefficients at the level of |R| = 0.024.Comment: With changes to introduction. 5 pages, including 4 figures. Submitted to Europhys. Let

    Probing Qubit Memory Errors at the Part-per-Million Level

    Full text link
    Robust qubit memory is essential for quantum computing, both for near-term devices operating without error correction, and for the long-term goal of a fault-tolerant processor. We directly measure the memory error ϵm\epsilon_m for a 43^{43}Ca+^+ trapped-ion qubit in the small-error regime and find ϵm<10−4\epsilon_m<10^{-4} for storage times t\lesssim50\,\mbox{ms}. This exceeds gate or measurement times by three orders of magnitude. Using randomized benchmarking, at t=1\,\mbox{ms} we measure ϵm=1.2(7)×10−6\epsilon_m=1.2(7)\times10^{-6}, around ten times smaller than that extrapolated from the T2∗T_{2}^{\ast} time, and limited by instability of the atomic clock reference used to benchmark the qubit.Comment: 8 pages, 5 figure
    • …
    corecore