27,386 research outputs found

    High-fidelity readout of trapped-ion qubits

    Full text link
    We demonstrate single-shot qubit readout with fidelity sufficient for fault-tolerant quantum computation, for two types of qubit stored in single trapped calcium ions. For an optical qubit stored in the (4S_1/2, 3D_5/2) levels of 40Ca+ we achieve 99.991(1)% average readout fidelity in one million trials, using time-resolved photon counting. An adaptive measurement technique allows 99.99% fidelity to be reached in 145us average detection time. For a hyperfine qubit stored in the long-lived 4S_1/2 (F=3, F=4) sub-levels of 43Ca+ we propose and implement a simple and robust optical pumping scheme to transfer the hyperfine qubit to the optical qubit, capable of a theoretical fidelity 99.95% in 10us. Experimentally we achieve 99.77(3)% net readout fidelity, inferring at least 99.87(4)% fidelity for the transfer operation.Comment: 4 pages, 3 figures; improved readout fidelity (numerical results changed

    Emergence of long-range order in BaTiO3 from local symmetry-breaking distortions

    Get PDF
    By using a symmetry motivated basis to evaluate local distortions against pair distribution function data (PDF), we show without prior bias, that the off-centre Ti displacements in the archetypal ferroelectric BaTiO3 are zone centred and rhombohedral-like in nature across its known ferroelectric and paraelectric phases. With our newly-gained insight we construct a simple Monte Carlo (MC) model which captures our main experimental findings and demonstrate how the rich crystallographic phase diagram of BaTiO3 emerges from correlations of local symmetry-breaking distortions alone. Our results strongly support the order-disorder picture for these phase transitions, but can also be reconciled with the soft-mode theory of BaTiO3 that is supported by some spectroscopic techniques.Comment: 5 pages, 3 figure

    Scalable simultaneous multi-qubit readout with 99.99% single-shot fidelity

    Full text link
    We describe single-shot readout of a trapped-ion multi-qubit register using space and time-resolved camera detection. For a single qubit we measure 0.9(3)x10^{-4} readout error in 400us exposure time, limited by the qubit's decay lifetime. For a four-qubit register (a "qunybble") we measure an additional error of only 0.1(1)x10^{-4} per qubit, despite the presence of 4% optical cross-talk between neighbouring qubits. A study of the cross-talk indicates that the method would scale with negligible loss of fidelity to ~10000 qubits at a density <~1 qubit/um^2, with a readout time ~1us/qubit.Comment: 4 pages, 3 figures; simulations added to fig.3, with some further text and figure revisions. Main results unchanged

    Mentoring to reduce antisocial behaviour in childhood

    Get PDF
    The effects of social interventions need to be examined in real life situations as well as studie

    Experimental recovery of a qubit from partial collapse

    Full text link
    We describe and implement a method to restore the state of a single qubit, in principle perfectly, after it has partially collapsed. The method resembles the classical Hahn spin-echo, but works on a wider class of relaxation processes, in which the quantum state partially leaves the computational Hilbert space. It is not guaranteed to work every time, but successful outcomes are heralded. We demonstrate using a single trapped ion better performance from this recovery method than can be obtained employing projection and post-selection alone. The demonstration features a novel qubit implementation that permits both partial collapse and coherent manipulations with high fidelity.Comment: 5 pages, 3 figure
    corecore