15 research outputs found

    Mechanical and electrical characterization of wearable textile pressure and strain sensors based on PEDOT:PSS

    Get PDF
    Il termine tecnologia indossabile si riferisce a quei dispositivi elettronici incorporati negli indumenti od accessori che possono essere comodamente indossati. Essi sono ampiamente utilizzati in campo medico, sportivo, educativo o per monitorare disabilità. In questa tesi sono stati sviluppati sensori di pressione e di deformazione tessili, proponendo il modello teorico che ne descrive il comportamento. L'elemento attivo di tali sensori tessili è basato sul polimero intrinsecamente conduttivo (PEDOT:PSS). La soluzione conduttiva è stata depositata sui tessuti tramite il metodo drop-casting e la tecnica screen printing. La teoria sviluppata per il tessuto di cotone ha dimostrato che è possibile cambiare il range di pressione in cui i sensori rispondono cambiando la concentrazione di glicole etilenico presente nella soluzione di PEDOT:PSS pur mantenendo la geometria dei sensori inalterata. Per realizzare un'applicazione reale, il sensore di pressione tessile è stato fabbricato su un tessuto tecnico sportivo elastico. Comportamenti simili sono stati ottenuti dimostrando la validità del modello proposto. Successivamente, sono presentati i processi di fabbricazione e la caratterizzazione elettro-meccanica di sensori di deformazione tessili. Range tests e stability tests eseguiti su questi sensori di deformazione forniscono notizie circa le loro prestazioni:affidabilità e gauge factor. Il meccanismo di rilevamento è stato analizzato con un modello teorico basato sulle proprietà del tessuto e sulla deformazione della struttura wale-course tipica dei tessuti a maglia. I risultati ottenuti durante questo lavoro permettono lo sviluppo di una nuova generazione di sensori di pressione e di deformazione tessili che potranno essere comodamente indossati nella vita di tutti i giorni

    Fully Textile X-Ray Detectors Based on Fabric-Embedded Perovskite Crystals

    Get PDF
    The interest and thrust for wearable ionizing radiation dosimeters are rapidly growing, stimulated by a large number of different applications impacting on humankind, spanning from medicine to civil security and space missions. Lead halide perovskites are considered one of the most promising classes of novel materials for X-ray detectors due to their superior electronic and detection performance coupled with compatibility with solution-based printing processes, allowing fabrication onto flexible substrates. It is reported on fully textile perovskite-based direct X-ray detectors, where the photoactive layer is constituted by a silk-satin fabric functionalized with methylammonium lead bromide perovskite crystals embedded in the textile. The reliability of the proposed fabrication process, based on simple and low-tech deposition techniques adaptable to industrial printing technologies for textiles, is assessed by realizing different detector's architectures that exhibit comparable detection performances. Sensitivity values up to (12.2 +/- 0.6) mu C Gy(-1) cm(-2) and a limit of detection down to 3 mu Gy s(-1) are achieved, and low bias operation (down to 1 V) is demonstrated, validating wearable applications. Further, fully textile pixelated matrix X-ray sensors are implemented and tested, providing the proof of principle for large-area scalability

    Design of an electrochemically gated organic semiconductor for pH sensing

    Get PDF
    Since the development of potentiometric ion-selective electrodes, remarkable steps have been taken towards progressive simplification and improved robustness of pH sensing probes. In particular, the design of compact sensing architectures using solid-state components holds great potential for portable and wearable applications. Here we report the development of an electrochemically gated device for pH detection, combining the robustness of potentiometric-like transduction with an extremely simple and integrated geometry requiring no reference. The sensor is a two-point probe device comprising two thin polymeric films, i.e. a charge transport layer and a pH-sensitive layer, and exhibits a sensitivity of (8.3 ± 0.2) × 10−3 pH unit−1 in the pH range from 2 to 7. Thanks to the versatility and robustness of the optimised design, a textile pH sensor was fabricated whose performance is comparable with that of glass sensors

    Em que ponto estamos? Sessenta anos de reformas institucionais na Itália (1946-2005)

    Full text link

    TIPS-pentacene come rivelatore di raggi-X

    Get PDF
    Il presente lavoro di tesi si inserisce all’interno del progetto europeo i-FLEXIS il cui obiettivo è lo sviluppo di un sensore di raggi X innovativo, affidabile, a basso costo e basato su componenti eterogenei organici. Attualmente, i rivelatori di radiazione ionizzante a stato solido fanno uso di materiali inorganici e sono ampiamente impiegati in ambito medico, industriale e come dispositivi per la sicurezza. Le scoperte scientifiche degli ultimi anni nell'ambito dei semiconduttori organici hanno evidenziato che tali materiali sono sensibili alla radiazione ionizzante e il loro utilizzo permette di realizzare rivelatori diretti di raggi-X, convertendo fotoni in segnale elettrico. Questi dispositivi sono caratterizzati da flessibilità, possibilità di lavorare a temperatura ambiente, basso costo di produzione, poca energia di alimentazione, alta sostenibilità ambientale e dalla possibilità di coprire grandi aree. Tutte queste proprietà concorrono ad incrementare sempre più l’attenzione e l’interesse dei ricercatori in questo relativamente nuovo mondo: i semiconduttori organici. In questa tesi sono stati esaminati cinque diversi campioni di TIPS-pentacene con la finalità di evidenziare quali si prestino meglio come rivelatori di raggi-X. I campioni sono tutti in diverse forme e spaziano dal cristallo singolo ai film sottili, con particolare attenzione al comportamento dei cristalli singoli cresciuti mediante processi di stampa direttamente sul substrato. Per quanto riguarda i semiconduttori organici, la frazione di raggi-X assorbita dai materiali è molto piccola e non è in grado di giustificare il segnale misurato. Si è effettuato inoltre un confronto tra la risposta dei campioni alla luce visibile e alla radiazione ionizzante per comprendere il meccanismo di generazione e rivelazione delle cariche in seguito all’assorbimento di raggi-X

    Smart Textile Sensors for Healthcare Monitoring

    No full text
    Wearable electronic textiles are an emerging research field playing a pivotal role among several different technological areas such as sensing, communication, clothing, health monitoring, information technology, and microsystems. The possibility to realise a fully-textile platform, endowed with various sensors directly realised with textile fibres and fabric, represents a new challenge for the entire research community. Among several high-performing materials, the intrinsically conductive poly(3,4-ethylenedioxythiophene) (PEDOT), doped with poly(styrenesulfonic acid) (PSS), or PEDOT:PSS, is one of the most representative and utilised, having an excellent chemical and thermal stability, as well as reversible doping state and high conductivity. This work relies on PEDOT:PSS combined with sensible materials to design, realise, and develop textile chemical and physical sensors. In particular, chloride concentration and pH level sensors in human sweat for continuous monitoring of the wearer's hydration status and stress level are reported. Additionally, a prototype smart bandage detecting the moisture level and pH value of a bed wound to allow the remote monitoring of the healing process of severe and chronic wounds is described. Physical sensors used to monitor the pressure distribution for rehabilitation, workplace safety, or sport tracking are also presented together with a novel fully-textile device able to measure the incident X-ray dose for medical or security applications where thin, comfortable, and flexible features are essential. Finally, a proof-of-concept for an organic-inorganic textile thermoelectric generator that harvests energy directly from body heat has been proposed. Though further efforts must be dedicated to overcome issues such as durability, washability, power consumption, and large-scale production, the novel, versatile, and widely encompassing area of electronic textiles is a promising protagonist in the upcoming technological revolution

    Impact of Fabric Properties on Textile Pressure Sensors Performance

    Get PDF
    In recent years, wearable technologies have attracted great attention in physical and chemical sensing applications. Wearable pressure sensors with high sensitivity in low pressure range (<10 kPa) allow touch detection for human-computer interaction and the development of artificial hands for handling objects. Conversely, pressure sensors that perform in a high pressure range (up to 100 kPa), can be used to monitor the foot pressure distribution, the hand stress during movements of heavy weights or to evaluate the cyclist’s pressure pattern on a bicycle saddle. Recently, we developed a fully textile pressure sensor based on a conductive polymer, with simple fabrication and scalable features. In this paper, we intend to provide an extensive description on how the mechanical properties of several fabrics and different piezoresistive ink formulation may have an impact in the sensor’s response during a dynamic operation mode. These results highlight the complexity of the system due to the presence of various parameters such as the fabric used, the conductive polymer solution, the operation mode and the desired pressure range. Furthermore, this work can lead to a protocol for new improvements and optimizations useful for adapting textile pressure sensors to a large variety of applications

    Textile Chemical Sensors Based on Conductive Polymers for the Analysis of Sweat

    No full text
    Wearable textile chemical sensors are promising devices due to the potential applications in medicine, sports activities and occupational safety and health. Reaching the maturity required for commercialization is a technology challenge that mainly involves material science because these sensors should be adapted to flexible and light-weight substrates to preserve the comfort of the wearer. Conductive polymers (CPs) are a fascinating solution to meet this demand, as they exhibit the mechanical properties of polymers, with an electrical conductivity typical of semiconductors. Moreover, their biocompatibility makes them promising candidates for effectively interfacing the human body. In particular, sweat analysis is very attractive to wearable technologies as perspiration is a naturally occurring process and sweat can be sampled non-invasively and continuously over time. This review discusses the role of CPs in the development of textile electrochemical sensors specifically designed for real-time sweat monitoring and the main challenges related to this topic

    Layered Double Hydroxide-Modified Organic Electrochemical Transistor for Glucose and Lactate Biosensing

    No full text
    Biosensors based on Organic Electrochemical Transistors (OECTs) are developed for the selective detection of glucose and lactate. The transistor architecture provides signal amplification (gain) with respect to the simple amperometric response. The biosensors are based on a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) channel and the gate electrode is functionalised with glucose oxidase (GOx) or lactate oxidase (LOx) enzymes, which are immobilised within a Ni/Al Layered Double Hydroxide (LDH) through a one-step electrodeposition procedure. The here-designed OECT architecture allows minimising the required amount of enzyme during electrodeposition. The output signal of the biosensor is the drain current (Id), which decreases as the analyte concentration increases. In the optimised conditions, the biosensor responds to glucose in the range of 0.1–8.0 mM with a limit of detection (LOD) of 0.02 mM. Two regimes of proportionality are observed. For concentrations lower than 1.0 mM, a linear response is obtained with a mean gain of 360, whereas for concentrations higher than 1.0 mM, Id is proportional to the logarithm of glucose concentration, with a gain of 220. For lactate detection, the biosensor response is linear in the whole concentration range (0.05–8.0 mM). A LOD of 0.04 mM is reached, with a net gain equal to 400
    corecore