27 research outputs found

    Cd4+ T Cell Subsets during Virus Infection: Protective Capacity Depends on Effector Cytokine Secretion and on Migratory Capability

    Get PDF
    To analyze the antiviral protective capacities of CD4+ T helper (Th) cell subsets, we used transgenic T cells expressing an I-Ab–restricted T cell receptor specific for an epitope of vesicular stomatitis virus glycoprotein (VSV-G). After polarization into Th1 or Th2 effectors and adoptive transfer into T cell–deficient recipients, protective capacities were assessed after infection with different types of viruses expressing the VSV-G. Both Th1 and Th2 CD4+ T cells could transfer protection against systemic VSV infection, by stimulating the production of neutralizing immunoglobulin G antibodies. However, only Th1 CD4+ T cells were able to mediate protection against infection with recombinant vaccinia virus expressing the VSV-G (Vacc-IND-G). Similarly, only Th1 CD4+ T cells were able to rapidly eradicate Vacc-IND-G from peripheral organs, to mediate delayed-type hypersensitivity responses against VSV-G and to protect against lethal intranasal infection with VSV. Protective capacity correlated with the ability of Th1 CD4+ T cells to rapidly migrate to peripheral inflammatory sites in vivo and to respond to inflammatory chemokines that were induced after virus infection of peripheral tissues. Therefore, the antiviral protective capacity of a given CD4+ T cell is governed by the effector cytokines it produces and by its migratory capability

    Therapeutic use of a selective S1P1 receptor modulator ponesimod in autoimmune diabetes.

    Get PDF
    In the present study, we investigated the therapeutic potential of a selective S1P1 receptor modulator, ponesimod, to protect and reverse autoimmune diabetes in non-obese diabetic (NOD) mice. Ponesimod was administered orally to NOD mice starting at 6, 10, 13 and 16 weeks of age up to 35 weeks of age or to NOD mice showing recent onset diabetes. Peripheral blood and spleen B and T cell counts were significantly reduced after ponesimod administration. In pancreatic lymph nodes, B lymphocytes were increased and expressed a transitional 1-like phenotype. Chronic oral ponesimod treatment efficiently prevented autoimmune diabetes in 6, 10 and 16 week-old pre-diabetic NOD mice. Treatment withdrawal led to synchronized disease relapse. Ponesimod did not inhibit the differentiation of autoreactive T cells as assessed by adoptive transfer of lymphocytes from treated disease-free NOD mice. In addition, it did not affect the migration, proliferation and activation of transgenic BDC2.5 cells into the target tissue. However, ponesimod inhibited spreading of the T cell responses to islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP). Treatment of diabetic NOD mice with ponesimod induced disease remission. However, here again, upon treatment cessation, the disease rapidly recurred. This recurrence was effectively prevented by combination treatment with a CD3 antibody leading to the restoration of self-tolerance. In conclusion, treatment with a selective S1P1 modulator in combination with CD3 antibody represents a promising therapeutic approach for the treatment of autoimmune diabetes

    Macrophages exposed to Mycobacterium tuberculosis release chemokines able to recruit selected leucocyte subpopulations: focus on γδ cells

    No full text
    Granuloma is a typical feature of tuberculosis. We evaluated the chemotaxis of selected human leucocyte subsets induced by macrophages incubated with Mycobacterium tuberculosis (MT)-derived products in vitro. The release of monocyte chemotactic protein 1 (MCP-1) and interleukin-8 (IL-8) correlated with the specific induction of strong chemotaxis towards monocytes and polymorphonuclear leucocytes (PMNs). γδ and T helper type 1 (Th1) αβ lymphocytes were chemoattracted, while T-resting, IL-2-activated and Th2 lymphocytes were unaffected. Activation with mycobacterium-derived, phosphate-containing components, modulated the chemokine receptor profile of γδ T lymphocytes as well as their pattern of cyto-chemokine production, disclosing a potential for their active participation in granuloma formation. In particular, CXCR3 and IP-10, which we found to be released by MT-pulsed alveolar macrophages, seem to represent the receptor–counter-receptor pair implicated in the chemotaxis of γδ lymphocytes. Immunohistochemical analysis and in situ hybridization revealed the in vivo presence of IL-8, MCP-1 and IL-10 in lymph node and lung tuberculous granulomas. Our results underscore the role of MT extracts in the induction of macrophage-derived chemokines responsible for the orchestrated recruitment of PMNs, monocytes, and Th1 and γδ T cells, as well as in the regulation of γδ function

    Translational precision medicine: an industry perspective

    No full text
    In the era of precision medicine, digital technologies and artificial intelligence, drug discovery and development face unprecedented opportunities for product and business model innovation, fundamentally changing the traditional approach of how drugs are discovered, developed and marketed. Critical to this transformation is the adoption of new technologies in the drug development process, catalyzing the transition from serendipity-driven to data-driven medicine. This paradigm shift comes with a need for both translation and precision, leading to a modern Translational Precision Medicine approach to drug discovery and development. Key components of Translational Precision Medicine are multi-omics profiling, digital biomarkers, model-based data integration, artificial intelligence, biomarker-guided trial designs and patient-centric companion diagnostics. In this review, we summarize and critically discuss the potential and challenges of Translational Precision Medicine from a cross-industry perspective
    corecore