291 research outputs found

    New VLT observations of the Fermi pulsar PSR J1048-5832

    Full text link
    PSR J1048-5832 is a Vela-like (P=123.6 ms; tau~20.3 kyr) gamma-ray pulsar detected by Fermi, at a distance of ~2.7 kpc and with a rotational energy loss rate dot{E}_{SD} ~2 x 10^{36} erg/s. The PSR J1048-5832 field has been observed with the VLT in the V and R bands. We used these data to determine the colour of the object detected closest to the Chandra position (Star D) and confirm that it is not associated with the pulsar. For the estimated extinction along the line of sight, inferred from a re-analysis of the Chandra and XMM-Newton spectra, the fluxes of Star D (V~26.7; R~25.8) imply a -0.13 < (V-R)_0 < 0.6. This means that the PSR J1048-5832 spectrum would be unusually red compared to the Vela pulsar.Moreover, the ratio between the unabsorbed optical and X-ray flux of PSR J1048-5832 would be much higher than for other young pulsars. Thus, we conclude that Star D is not the PSR J1048-5832 counterpart. We compared the derived R and V-band upper limits (R>26.4; V>27.6) with the extrapolation of the X and gamma-ray spectra and constrained the pulsar spectrum at low-energies. In particular, the VLT upper limits suggest that the pulsar spectrum could be consistent with a single power-law, stretching from the gamma-rays to the optical.Comment: 5 pages, 2 figures, accepted for publication on Monthly Notices of the Royal Astronomical Society Main Journa

    The impact of the GDPR on the governance of biobank research

    Get PDF
    Governance of health and genomic data access in the context of biobanking is of salient importance in implementing the EU General Data Protection Regulation (GDPR). Various components of data access governance could be considered as ‘organizational measures’ which are stressed in the Article 89(1) GDPR together with technical measures that should be used in order to safeguard rights of the data subjects when processing data under research exemption rules. In this chapter, we address the core elements regarding governance of biobanks in the view of GDPR, including conditions for processing personal data, data access models, oversight bodies and data access agreements. We conclude by highlighting the importance of guidelines and policy documents in helping the biobanks in improving the data access governance. In addition, we stress that it is important to ensure the existing and emerging oversight bodies are equipped with adequate expertise regarding using and sharing health and genomic data and are aware of the associated informational risks

    Supergiant Fast X-ray Transients uncovered by the EXTraS project: flares reveal the development of magnetospheric instability in accreting neutron stars

    Get PDF
    The low luminosity, X-ray flaring activity, of the sub-class of high mass X-ray binaries called Supergiant Fast X-ray Transients, has been investigated using XMM-Newton public observations, taking advantage of the products made publicly available by the EXTraS project. One of the goals of EXTraS was to extract from the XMM-Newton public archive information on the aperiodic variability of all sources observed in the soft X-ray range with EPIC (0.2-12 keV). Adopting a Bayesian block decomposition of the X-ray light curves of a sample of SFXTs, we picked out 144 X-ray flares, covering a large range of soft X-ray luminosities (1e32-1e36 erg/s). We measured temporal quantities, like the rise time to and the decay time from the peak of the flares, their duration and the time interval between adjacent flares. We also estimated the peak luminosity, average accretion rate and energy release in the flares. The observed soft X-ray properties of low-luminosity flaring activity from SFXTs is in qualitative agreement with what is expected by the application of the Rayleigh-Taylor instability model in accreting plasma near the neutron star magnetosphere. In the case of rapidly rotating neutron stars, sporadic accretion from temporary discs cannot be excluded.Comment: Accepted for publication in MNRAS (accepted 2019 May 1; received 2019 April 30; in original form 2019 February 25). 22 pages, 16 figures, 3 tables

    The first orbital period of a very bright and fast Nova in M31: M31N 2013-01b

    Get PDF
    We present the first X-ray and UV/optical observations of a very bright and fast nova in the disc of M31, M31N 2013-01b. The nova reached a peak magnitude R∼R\sim15 mag and decayed by 2 magnitudes in only 3 days, making it one of the brightest and fastest novae ever detected in Andromeda. From archival multi-band data we have been able to trace its fast evolution down to U>21U>21 mag in less than two weeks and to uncover for the first time the Super-Soft X-ray phase, whose onset occurred 10-30 days from the optical maximum. The X-ray spectrum is consistent with a blackbody with a temperature of ∼\sim50 eV and emitting radius of ∼\sim4×109\times 10^{9} cm, larger than a white dwarf radius, indicating an expanded region. Its peak X-ray luminosity, 3.5×1037\times 10^{37} erg s−1^{-1}, locates M31N 2013-01b among the most luminous novae in M31. We also unambiguously detect a short 1.28±\pm0.02 h X-ray periodicity that we ascribe to the binary orbital period, possibly due to partial eclipses. This makes M31N 2013-01b the first nova in M31 with an orbital period determined. The short period also makes this nova one of the few known below the 2-3 h orbital period gap. All the observed characteristics strongly indicate that M31N 2013-01b harbours a massive white dwarf and a very low-mass companion, consistent with being a nova belonging to the disc population of the Andromeda Galaxy.Comment: 9 pages, 3 figures, 2 tables; accepted by the Astrophysical Journa

    A systematic analysis of the XMM-Newton background: III. Impact of the magnetospheric environment

    Get PDF
    A detailed characterization of the particle induced background is fundamental for many of the scientific objectives of the Athena X-ray telescope, thus an adequate knowledge of the background that will be encountered by Athena is desirable. Current X-ray telescopes have shown that the intensity of the particle induced background can be highly variable. Different regions of the magnetosphere can have very different environmental conditions, which can, in principle, differently affect the particle induced background detected by the instruments. We present results concerning the influence of the magnetospheric environment on the background detected by EPIC instrument onboard XMM-Newton through the estimate of the variation of the in-Field-of-View background excess along the XMM-Newton orbit. An important contribution to the XMM background, which may affect the Athena background as well, comes from soft proton flares. Along with the flaring component a low-intensity component is also present. We find that both show modest variations in the different magnetozones and that the soft proton component shows a strong trend with the distance from Earth.Comment: To appear in Experimental Astronomy. Presented at AHEAD Background Workshop, 28-30 November 2016. Rome, Ital

    A Systematic Analysis of the XMM-Newton Background: I. Dataset and Extraction Procedures

    Get PDF
    XMM-Newton is the direct precursor of the future ESA ATHENA mission. A study of its particle-induced background provides therefore significant insight for the ATHENA mission design. We make use of about 12 years of data, products from the third XMM-Newton catalog as well as FP7 EXTraS project to avoid celestial sources contamination and to disentangle the different components of the XMM-Newton particle-induced background. Within the ESA R&D AREMBES collaboration, we built new analysis pipelines to study the different components of this background: this covers time behavior as well as spectral and spatial characteristics.Comment: To appear in Experimental Astronomy, presented at AHEAD Background Workshop, 28-30 November 2016, Rome, Italy. 12 pages, 6 figure

    X-ray pulsations from the radio-quiet gamma-ray pulsar in CTA 1

    Full text link
    Prompted by the Fermi LAT discovery of a radio-quiet gamma-ray pulsar inside the CTA 1 supernova remnant, we obtained a 130 ks XMM-Newton observation to assess the timing behavior of this pulsar. Exploiting both the unprecedented photon harvest and the contemporary Fermi LAT timing measurements, a 4.7 sigma single peak pulsation is detected, making PSR J0007+7303 the second example, after Geminga, of a radio-quiet gamma-ray pulsar also seen to pulsate in X-rays. Phase-resolved spectroscopy shows that the off-pulse portion of the light curve is dominated by a power-law, non-thermal spectrum, while the X-ray peak emission appears to be mainly of thermal origin, probably from a polar cap heated by magnetospheric return currents, pointing to a hot spot varying throughout the pulsar rotation.Comment: 19 pages, 4 figures. Accepted for publication in ApJ Letter

    Radio-quiet and radio-loud pulsars: similar in Gamma-rays but different in X-rays

    Get PDF
    We present new Chandra and XMM-Newton observations of a sample of eight radio-quiet Gamma-ray pulsars detected by the Fermi Large Area Telescope. For all eight pulsars we identify the X-ray counterpart, based on the X-ray source localization and the best position obtained from Gamma-ray pulsar timing. For PSR J2030+4415 we found evidence for an about 10 arcsec-long pulsar wind nebula. Our new results consolidate the work from Marelli et al. 2011 and confirm that, on average, the Gamma-ray--to--X-ray flux ratios (Fgamma/Fx) of radio-quiet pulsars are higher than for the radio-loud ones. Furthermore, while the Fgamma/Fx distribution features a single peak for the radio-quiet pulsars, the distribution is more dispersed for the radio-loud ones, possibly showing two peaks. We discuss possible implications of these different distributions based on current models for pulsar X-ray emission.Comment: Accepted for publication in The Astrophysical Journal; 12 pages, 3 figures, 2 table

    GLIS3 and Thyroid: A Pleiotropic Candidate Gene for Congenital Hypothyroidism

    Get PDF
    Variations in the transcription factor Gli-similar 3 (GLIS3) gene have been associated to variable congenital endocrine defects, including both morphogenetic and functional thyroid alterations. Evidence from Glis3 knockout mice indicates a relevant role for GLIS3 in thyroid hormone biosynthesis and postnatal thyroid gland growth, with a mechanism of action downstream of the TSH/TSHR interaction. However, the pathophysiological role of this transcription factor during the embryonic thyroid development remains unexplored. In this manuscript, we will provide an overview of the current knowledge on GLIS3 function during development. As a perspective, we will present preliminary evidence in the zebrafish model in support of a potential role for this pleiotropic transcription factor in the early stages of thyroid gland development
    • …
    corecore